The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the t...The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the thermal distribution and passage of fluid in a lid-driven cavity with an upper oscillating surface and an attached baffle.The walls of a cavity at the left and right were maintained at 350 and 293 K,respectively.The upper oscillating surface was equipped with a variable height to baffle to increase the convection of the three kinds of TiO_(2),Al_(2)O_(3),andCuO nanofluids with various of 0.4,0.8,and 0.4,0.8,and 1.2 vol.%in volume fractions.It was found that using a baffle attached to the oscillating upper surface of the cavity will lead to improving the distribution of vorticity in the cavity and increase the stream in the cavity.Also,increasing the baffle height,oscillating velocity,and volume fraction of nanoparticles contributes to enhancing the Nusselt number values by 50%for increasing baffle height from h∗=0.1 to 0.1.Also,the Nu improved by 20%for increasing oscillating velocity from w=05 to 20 rad/s and by 12%for using Al_(2)O_(3)nanofluid instead of TiO3 atϕ=0.8 vol.%.展开更多
Medium Frequency radio holds significance in modern society as it supports broadcasting and individual communications in the public, government, and military sectors. Enhancing the availability and quality of these co...Medium Frequency radio holds significance in modern society as it supports broadcasting and individual communications in the public, government, and military sectors. Enhancing the availability and quality of these communications is only possible by enhancing the understanding of medium frequency propagation. While traditional methods of radio wave propagation research can have a high material demand and cost, software defined radio presents itself as a versatile and low-cost platform for medium frequency signal reception and data acquisition. This paper details a research effort that utilizes software defined radio to help characterize medium frequency signal strength in relation to ionospheric and solar weather propagation determinants. Signal strength data from seven medium frequency stations of unique transmission locations and varying transmission powers were retrieved in 24-hour segments via a receiving loop antenna, Airspy HF+ Discovery software defined radio, and SDR Sharp software interface network. Retrieved data sets were visualized and analyzed in MATLAB for the identification of signal strength trends, which were subsequently compared to historical ionospheric and space weather indices in pursuit of a quantifiable correlation between such indices and medium frequency signal strengths. The results of the investigation prove that software defined radio, when used in conjunction with a receiving antenna and data analysis program, provides a versatile mechanism for cost-efficient propagation research.展开更多
The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the d...The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.展开更多
The cooling of a(pebble bed)spent fuel in a high-temperature gas-cooled reactor(HTGR)is adversely affected by an increase in the temperature of the used gas(air).To investigate this problem,a configuration consisting ...The cooling of a(pebble bed)spent fuel in a high-temperature gas-cooled reactor(HTGR)is adversely affected by an increase in the temperature of the used gas(air).To investigate this problem,a configuration consisting of three copper spheres arranged in tandem subjected to a forced mistflow inside a cylindrical channel is considered.The heat transfer coefficients and related variations as a function of Reynolds number are investigated accord-ingly.The experimental results show that when compared to those with only airflow,the heat transfer coefficient of the spherical elements with mistflow(j=112 kg/m2 hr,Re=55000)increases by 180%,75%,and 20%,respec-tively for thefirst,second,and third spherical element(the corresponding heat transfer enhancement ratio being 2.3,1.4,and 1.1).Additional numerical simulations reveal that the presence of stagnant zones with intense vortex formation around each spherical element contributes significantly to determine the heat transfer behavior.展开更多
This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,3...This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube,which consists of three sections,each one containing two slots.The slot is cut at a 45 degree angle toward the inner tube surface,which results in diverging theflow toward the inner hot tube surface in order to enhance the heat transfer process.Air is considered as the workingfluid with Prandtl number 0.71.The Reynolds number spans the interval from 6,000–13,500,which indicates that the consideredflow is turbulent.The heat exchanger performance is studied and analyzed in terms of average Nusselt number.The experimental results show that the Nusselt number value is directly proportional to the increase of the Reynolds number,and the number of turbulators inserts.With the use of three novel turbulators,the heat transfer was about 3.15 times higher than that in the smooth tube and the friction factor was about 1.11.展开更多
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.展开更多
Heat exchangers are widely used in the process engineering such as the chemical industries, the petroleum industries, and the HVAC applications etc. An optimally designed heat exchanger cannot only help the optimizati...Heat exchangers are widely used in the process engineering such as the chemical industries, the petroleum industries, and the HVAC applications etc. An optimally designed heat exchanger cannot only help the optimization of the equipment size but also the reduction of the power consumption. In this paper, a new optimization approach called algorithms of changes (AOC) is proposed for design and optimization of the shell-tube heat exchanger. This new optimization technique is developed based on the concept of the book of changes (I Ching) which is one of the oldest Chinese classic texts. In AOC, the hexagram operations in I Ching are generalized to binary string case and an iterative process, which imitates the I Ching inference, is defined. Before applying the AOC to the heat exchanger design problem, the new optimization method is examined by the benchmark optimization problems such as the global optimization test functions and the travelling salesman problem (TSP). Based on the TSP results, the AOC is shown to be superior to the genetic algorithms (GA). The AOC is then used in the optimal design of heat exchanger. The shell inside diameter, tube outside diameter, and baffles spacing are treated as the design (or optimized) variables. The cost of the heat exchanger is arranged as the objective function. For the heat exchanger design problem, the results show that the AOC is comparable to the GA method. Both methods can find the optimal solution in a short period of time.展开更多
Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the...Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.展开更多
As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe ...As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.展开更多
Upper gastrointestinal(GI)cancers are the leading cause of cancer-related deaths worldwide.Early identification of precancerous lesions has been shown to minimize the incidence of GI cancers and substantiate the vital...Upper gastrointestinal(GI)cancers are the leading cause of cancer-related deaths worldwide.Early identification of precancerous lesions has been shown to minimize the incidence of GI cancers and substantiate the vital role of screening endoscopy.However,unlike GI cancers,precancerous lesions in the upper GI tract can be subtle and difficult to detect.Artificial intelligence techniques,especially deep learning algorithms with convolutional neural networks,might help endoscopists identify the precancerous lesions and reduce interobserver variability.In this review,a systematic literature search was undertaken of the Web of Science,PubMed,Cochrane Library and Embase,with an emphasis on the deep learning-based diagnosis of precancerous lesions in the upper GI tract.The status of deep learning algorithms in upper GI precancerous lesions has been systematically summarized.The challenges and recommendations targeting this field are comprehensively analyzed for future research.展开更多
In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was ...In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.展开更多
Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-...Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-and-error method and then the vehicle engine is run on the dynamometer to show the actual engine performance. Obviously the current practice involves a large amount of time and money, and then may even fail to tune up the engine optimally because a formal performance model of the engine has not been determined yet. With an emerging technique, Support Vector Machines (SVM), the approximate per- formance model of a petrol vehicle engine can be determined by training the sample engine performance data acquired from the dynamometer. The number of dynamometer tests for an engine tune-up can therefore be reduced because the estimated engine performance model can replace the dynamometer tests to a certain extent. In this paper, the construction, validation and accuracy of the model are discussed. The study showed that the predicted results agree well with the actual test results. To illustrate the significance of the SVM methodology, the results were also compared with that regressed using multilayer feedforward neural networks.展开更多
We deal with the state consensus problem of a general Linear Interconnected Multi-Agent System (LIMAS) under a time-invariant and directed communication topology. Firstly, we propose a linear consensus protocol in a...We deal with the state consensus problem of a general Linear Interconnected Multi-Agent System (LIMAS) under a time-invariant and directed communication topology. Firstly, we propose a linear consensus protocol in a general form, which consists of state feedback of the agent itself and feedback form of the relative states between the agent and its neighbors. Secondly, a state-linear-transformation is applied to equivalently transform the state consensus problem into a partial stability problem. Based on the partial stability theory, we derive a sufficient and necessary criterion of consensus convergence, which is expressed via the Hurwitz stability of a real matrix constructed from the parameters of the agent models and the protocols, and present an analytical formula of the consensus function. Lastly, we propose a design procedure of the gain matrices in the protocol by solving a bilinear matrix inequality.展开更多
In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke autom...In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.展开更多
Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid...Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.展开更多
Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is...Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.展开更多
The uncertainty widely exists in the engineering practice.Therefore,it is necessary to research the effect of uncertainty on the structural system. In this paper,the reliability and sensitivity of the flexure hinge, w...The uncertainty widely exists in the engineering practice.Therefore,it is necessary to research the effect of uncertainty on the structural system. In this paper,the reliability and sensitivity of the flexure hinge, which is the key component of the compliant mechanisms,are investigated. The results of the reliability analysis can effectively guide the engineer to design and optimize the flexure hinge. In order to improve the calculating efficiency,the kriging method is introduced to estimate the failure probability and reliability sensitivity.展开更多
A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the...A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.展开更多
This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic systems.A dynamic system is a system where the rates of changes of its state variables are not neglig...This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic systems.A dynamic system is a system where the rates of changes of its state variables are not negligible.Quantum entanglement is realized by the Spontaneous Parametric Down-conversion process.Two entangled autonomous systems exhibit correlated behavior without any classical communication in between them due to the quantum entanglement phenomenon.Specifically,the behavior of a system,Bob,at a distance,is correlated with a corresponding system,Alice.In an automation scenario,the"Bob Robot"is entangled with the"Alice Robot"in performing autonomous tasks without any classical connection between them.Quantum cryptography is a capability that allows guaranteed security.Such capabilities can be implemented in control of autonomous mechanical systems where,for instance,an"Alice Autonomous System"can control a"Bob Autonomous System"for applications of automation and robotics.The applications of quantum technologies to mechanical systems,at a scale larger than the atomistic scale,for control and automation,is a novel contribution of this paper.Notably,the feedback control transfer function of an integrated classical dynamic system and a quantum state is proposed.展开更多
文摘The cavity with lid-driven is greatly used in mixing,coating,and drying applications and is a substantial issue in the study of thermal performance rate and fluid field.A numerical approach is presented to study the thermal distribution and passage of fluid in a lid-driven cavity with an upper oscillating surface and an attached baffle.The walls of a cavity at the left and right were maintained at 350 and 293 K,respectively.The upper oscillating surface was equipped with a variable height to baffle to increase the convection of the three kinds of TiO_(2),Al_(2)O_(3),andCuO nanofluids with various of 0.4,0.8,and 0.4,0.8,and 1.2 vol.%in volume fractions.It was found that using a baffle attached to the oscillating upper surface of the cavity will lead to improving the distribution of vorticity in the cavity and increase the stream in the cavity.Also,increasing the baffle height,oscillating velocity,and volume fraction of nanoparticles contributes to enhancing the Nusselt number values by 50%for increasing baffle height from h∗=0.1 to 0.1.Also,the Nu improved by 20%for increasing oscillating velocity from w=05 to 20 rad/s and by 12%for using Al_(2)O_(3)nanofluid instead of TiO3 atϕ=0.8 vol.%.
文摘Medium Frequency radio holds significance in modern society as it supports broadcasting and individual communications in the public, government, and military sectors. Enhancing the availability and quality of these communications is only possible by enhancing the understanding of medium frequency propagation. While traditional methods of radio wave propagation research can have a high material demand and cost, software defined radio presents itself as a versatile and low-cost platform for medium frequency signal reception and data acquisition. This paper details a research effort that utilizes software defined radio to help characterize medium frequency signal strength in relation to ionospheric and solar weather propagation determinants. Signal strength data from seven medium frequency stations of unique transmission locations and varying transmission powers were retrieved in 24-hour segments via a receiving loop antenna, Airspy HF+ Discovery software defined radio, and SDR Sharp software interface network. Retrieved data sets were visualized and analyzed in MATLAB for the identification of signal strength trends, which were subsequently compared to historical ionospheric and space weather indices in pursuit of a quantifiable correlation between such indices and medium frequency signal strengths. The results of the investigation prove that software defined radio, when used in conjunction with a receiving antenna and data analysis program, provides a versatile mechanism for cost-efficient propagation research.
文摘The design and construction of an experimental solar hybrid vehicle based on the combination of photovoltaic solar energy as the main source of electricity and electric power supplied by a generator activated by the driver's pedaling is introduced. The vehicle has a battery to store the energy provided by both systems. The development was motivated by a Latin American solar car race through the Atacama Desert in Chile and the initiative to promote the use of clean energy for transport. A general description of the vehicle, its energetic aspects and experimental results are presented.
文摘The cooling of a(pebble bed)spent fuel in a high-temperature gas-cooled reactor(HTGR)is adversely affected by an increase in the temperature of the used gas(air).To investigate this problem,a configuration consisting of three copper spheres arranged in tandem subjected to a forced mistflow inside a cylindrical channel is considered.The heat transfer coefficients and related variations as a function of Reynolds number are investigated accord-ingly.The experimental results show that when compared to those with only airflow,the heat transfer coefficient of the spherical elements with mistflow(j=112 kg/m2 hr,Re=55000)increases by 180%,75%,and 20%,respec-tively for thefirst,second,and third spherical element(the corresponding heat transfer enhancement ratio being 2.3,1.4,and 1.1).Additional numerical simulations reveal that the presence of stagnant zones with intense vortex formation around each spherical element contributes significantly to determine the heat transfer behavior.
文摘This research tests the effect of introducing turbulators of a new type into a circular tube heat exchanger under a constant and uniform longitudinal heatflux condition.A 45 mm diameter copper tube with a length of 1,350 mm is utilized with a solid disk being inserted inside the tube,which consists of three sections,each one containing two slots.The slot is cut at a 45 degree angle toward the inner tube surface,which results in diverging theflow toward the inner hot tube surface in order to enhance the heat transfer process.Air is considered as the workingfluid with Prandtl number 0.71.The Reynolds number spans the interval from 6,000–13,500,which indicates that the consideredflow is turbulent.The heat exchanger performance is studied and analyzed in terms of average Nusselt number.The experimental results show that the Nusselt number value is directly proportional to the increase of the Reynolds number,and the number of turbulators inserts.With the use of three novel turbulators,the heat transfer was about 3.15 times higher than that in the smooth tube and the friction factor was about 1.11.
基金supported by the National Natural Science Foundation of China(U21A20166)in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC)+1 种基金in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3)in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
文摘Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process.
基金supported by Science and Technology Development Fund of Macao SAR (Grant No. 033/2008/A2)Research Grant of University of Macao, China (Grant No. RG081/09-10S/TSC/FST)
文摘Heat exchangers are widely used in the process engineering such as the chemical industries, the petroleum industries, and the HVAC applications etc. An optimally designed heat exchanger cannot only help the optimization of the equipment size but also the reduction of the power consumption. In this paper, a new optimization approach called algorithms of changes (AOC) is proposed for design and optimization of the shell-tube heat exchanger. This new optimization technique is developed based on the concept of the book of changes (I Ching) which is one of the oldest Chinese classic texts. In AOC, the hexagram operations in I Ching are generalized to binary string case and an iterative process, which imitates the I Ching inference, is defined. Before applying the AOC to the heat exchanger design problem, the new optimization method is examined by the benchmark optimization problems such as the global optimization test functions and the travelling salesman problem (TSP). Based on the TSP results, the AOC is shown to be superior to the genetic algorithms (GA). The AOC is then used in the optimal design of heat exchanger. The shell inside diameter, tube outside diameter, and baffles spacing are treated as the design (or optimized) variables. The cost of the heat exchanger is arranged as the objective function. For the heat exchanger design problem, the results show that the AOC is comparable to the GA method. Both methods can find the optimal solution in a short period of time.
基金Supported by National Natural Science Foundation of China(Grant Nos.52072161,U20A20331)China Postdoctoral Science Foundation(Grant No.2019T120398)+2 种基金State Key Laboratory of Automotive Safety and Energy of China(Grant No.KF2016)Vehicle Measurement Control and Safety Key Laboratory of Sichuan Province(Grant No.QCCK2019-002)Young Elite Scientists Sponsorship Program by CAST(Grant No.2018QNRC 001).
文摘Due to the bus characteristics of large quality,high center of gravity and narrow wheelbase,the research of its yaw stability control(YSC)system has become the focus in the field of vehicle system dynamics.However,the tire nonlinear mechanical properties and the effectiveness of the YSC control system are not considered carefully in the current research.In this paper,a novel adaptive nonsingular fast terminal sliding mode(ANFTSM)control scheme for YSC is proposed to improve the bus curve driving stability and safety on slippery roads.Firstly,the STI(Systems Technologies Inc.)tire model,which can effectively reflect the nonlinear coupling relationship between the tire longitudinal force and lateral force,is established based on experimental data and firstly adopted in the bus YSC system design.On this basis,a more accurate bus lateral dynamics model is built and a novel YSC strategy based on ANFTSM,which has the merits of fast transient response,finite time convergence and high robustness against uncertainties and external disturbances,is designed.Thirdly,to solve the optimal allocation problem of the tire forces,whose objective is to achieve the desired direct yaw moment through the effective distribution of the brake force of each tire,the robust least-squares allocation method is adopted.To verify the feasibility,effectiveness and practicality of the proposed bus YSC approach,the TruckSim-Simulink co-simulation results are finally provided.The co-simulation results show that the lateral stability of bus under special driving conditions has been significantly improved.This research proposes a more effective design method for bus YSC system based on a more accurate tire model.
基金supported by the National Natural Science Foundation of China (10872142 and 10632040)New Century Excellent Talents in University of China (NCET-05-0247)the Key Program of the Natural Science Foundation of Tianjin (09JCZDJ26800)
文摘As a preliminary step in the nonlinear design of shape memory alloy(SMA) composite structures,the force-displacement characteristics of the SMA layer are studied.The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material.Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process,the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode.The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement.Furthermore the energy dissipated by SMA layer during one period is obtained by integration,then its dependencies are discussed on the vibration amplitude and the SMA's strain(Ms-Strain) value at the beginning of martensitic phase transformation.It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain.The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing.The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude.The obtained results are helpful for designing beams laminated with shape memory alloys.
基金The Science and Technology Development Fund,Macao SAR,No.0021/2019/A.
文摘Upper gastrointestinal(GI)cancers are the leading cause of cancer-related deaths worldwide.Early identification of precancerous lesions has been shown to minimize the incidence of GI cancers and substantiate the vital role of screening endoscopy.However,unlike GI cancers,precancerous lesions in the upper GI tract can be subtle and difficult to detect.Artificial intelligence techniques,especially deep learning algorithms with convolutional neural networks,might help endoscopists identify the precancerous lesions and reduce interobserver variability.In this review,a systematic literature search was undertaken of the Web of Science,PubMed,Cochrane Library and Embase,with an emphasis on the deep learning-based diagnosis of precancerous lesions in the upper GI tract.The status of deep learning algorithms in upper GI precancerous lesions has been systematically summarized.The challenges and recommendations targeting this field are comprehensively analyzed for future research.
基金Funded By the Natural Science Research Foundation of Department of Education of AnHui Province in China( No.KJ2009A021)
文摘In order to assess the new tribological properties of laser surface hardened GCr15 steel, the wear resistance between specimens treated with laser and those of conventionally hardened under dry sliding conditions was compared. The change of wear mechanisms in laser hardened GCr15 resulted in a distinct difference in wear rates. The results showed that quenched zones not only had sufficient depth of hardening and higher hardness, but had more retained austenite and finer carbides because of a higher degree of carbide dissolution. Laser surface hardened GCr15 steel specimens exhibited superior wear resistance to their conventionally hardened specimens due to the effects of the microstructure hardening, high hardness and toughness. The wear mechanism for both the laser quenched layer and conventionally hardened layer was highly similar, generally involving adhesive, material transfer, wear-induced oxidation and plowing. When conventionally hardened block specimens rubbed against the laser hardened specimens, the surface of conventionally hardened block specimens was polished. The microstructural thermal stability was increased after laser surface treatment.
文摘Modern automotive petrol engine performance is significantly affected by effective tune-up. Current practice of engine tune-up relies on the experience of the automotive engineer, and tune-up is usually done by trial-and-error method and then the vehicle engine is run on the dynamometer to show the actual engine performance. Obviously the current practice involves a large amount of time and money, and then may even fail to tune up the engine optimally because a formal performance model of the engine has not been determined yet. With an emerging technique, Support Vector Machines (SVM), the approximate per- formance model of a petrol vehicle engine can be determined by training the sample engine performance data acquired from the dynamometer. The number of dynamometer tests for an engine tune-up can therefore be reduced because the estimated engine performance model can replace the dynamometer tests to a certain extent. In this paper, the construction, validation and accuracy of the model are discussed. The study showed that the predicted results agree well with the actual test results. To illustrate the significance of the SVM methodology, the results were also compared with that regressed using multilayer feedforward neural networks.
基金supported in part by NSF of China(61273006 and 6141101096)High Technology Research and Development Program of China(863Program)(2011AA110301)+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(20111103110017)St.Petersburg State University(9.38.674.2013)the Russian Foundation for Basic Research(13-01-00376-a and 15-58-53017)
文摘We deal with the state consensus problem of a general Linear Interconnected Multi-Agent System (LIMAS) under a time-invariant and directed communication topology. Firstly, we propose a linear consensus protocol in a general form, which consists of state feedback of the agent itself and feedback form of the relative states between the agent and its neighbors. Secondly, a state-linear-transformation is applied to equivalently transform the state consensus problem into a partial stability problem. Based on the partial stability theory, we derive a sufficient and necessary criterion of consensus convergence, which is expressed via the Hurwitz stability of a real matrix constructed from the parameters of the agent models and the protocols, and present an analytical formula of the consensus function. Lastly, we propose a design procedure of the gain matrices in the protocol by solving a bilinear matrix inequality.
文摘In modem four-stroke engine technology, variable valve timing and lift control offers potential benefits for making a high-performance engine. A novel electro-hydraulic fully variable valve train for four-stroke automotive engines is introduced. The construction of the nonlinear mathematic model of the valve train system and its dynamic analysis are also presented. Experimental and simulation results show that the novel electro-hydraulic valve train can achieve fully variable valve timing and lift control. Consequently the engine performance on different loads and speeds will be significantly increased. The technology also permits the elimination of the traditional throttle valve in the gasoline engines and increases engine design flexibility.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.20120042120014)
文摘Hybrid modeling approaches have recently been investigated as an attractive alternative to model fermentation processes. Normally, these approaches require estimation data to train the empirical model part of a hybrid model. This may result in decreasing the generalization ability of the derived hybrid model. Therefore, a simultaneous hybrid modeling approach is presented in this paper. It transforms the training of the empirical model part into a dynamic system parameter identification problem, and thus allows training the empirical model part with only measured data. An adaptive escaping particle swarm optimization(AEPSO) algorithm with escaping and adaptive inertia weight adjustment strategies is constructed to solve the resulting parameter identification problem, and thereby accomplish the training of the empirical model part. The uniform design method is used to determine the empirical model structure. The proposed simultaneous hybrid modeling approach has been used in a lab-scale nosiheptide batch fermentation process. The results show that it is effective and leads to a more consistent model with better generalization ability when compared to existing ones. The performance of AEPSO is also demonstrated.
文摘Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.
基金Foundations of China Academic Engineering Physics(CAEP)(Nos.2013B0203028,2014B0203023)Technology Foundation Project,China(No.2015ZK1.1)
文摘The uncertainty widely exists in the engineering practice.Therefore,it is necessary to research the effect of uncertainty on the structural system. In this paper,the reliability and sensitivity of the flexure hinge, which is the key component of the compliant mechanisms,are investigated. The results of the reliability analysis can effectively guide the engineer to design and optimize the flexure hinge. In order to improve the calculating efficiency,the kriging method is introduced to estimate the failure probability and reliability sensitivity.
基金The research is partially supported by the grant RG081/04-05S/JXQ/FST from University of Macao and thegrant 050/2005/A from FDCT.
文摘A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we discuss the stability properties of T. Chan’s preconditioner cU (An) from the viewpoint of the numerical range. An application in numerical ODEs is also given.
文摘This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic systems.A dynamic system is a system where the rates of changes of its state variables are not negligible.Quantum entanglement is realized by the Spontaneous Parametric Down-conversion process.Two entangled autonomous systems exhibit correlated behavior without any classical communication in between them due to the quantum entanglement phenomenon.Specifically,the behavior of a system,Bob,at a distance,is correlated with a corresponding system,Alice.In an automation scenario,the"Bob Robot"is entangled with the"Alice Robot"in performing autonomous tasks without any classical connection between them.Quantum cryptography is a capability that allows guaranteed security.Such capabilities can be implemented in control of autonomous mechanical systems where,for instance,an"Alice Autonomous System"can control a"Bob Autonomous System"for applications of automation and robotics.The applications of quantum technologies to mechanical systems,at a scale larger than the atomistic scale,for control and automation,is a novel contribution of this paper.Notably,the feedback control transfer function of an integrated classical dynamic system and a quantum state is proposed.