Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens...Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.展开更多
Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether ...Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether and how food processing techniques reduce allergenicity.We here discuss the impacts of food processing technologies on the modification of physicochemical,structural,and immunogenic properties of allergenic proteins.Detection techniques for characterizing changes in these properties of food allergens are summarized.Food processing helps to reduce allergenicity by aggregating or denaturing proteins,which masks,modifies,or destroys antigenic epitopes,whereas,it cannot eliminate allergenicity completely,and sometimes even improves allergenicity by exposing new epitopes.Moreover,most food processing techniques have been tested on purified food allergens rather than food products due to potential interference of other food components.We provide guidance for further development of processing operations that can decrease the allergenicity of allergenic food proteins without negatively impacting the nutritional profile.展开更多
Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions a...Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.展开更多
Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high ac...Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.展开更多
Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used ...Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used to develop an adolescent-friendly functional snack food product in the light of food industry trends. Stages of product development, shelf life/physiochemical analysis (texture, pH, color, and water activity) and sensory evaluation were utilized in developing a functional snack mini muffin containing Spirulina and Bilberry. Aqueous (AQ) and 80% ethanol (ET) extracts of mini muffin formulations (chocolate, 1% Spirulina (S) + 4% Bilberry (B), 2% Spirulina (S) + 8% Bilberry (B)) were prepared using a standard protocol. Antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Potential (FRAP) assays. Utilizing a 5-point hedonic scale (1—Dislike very much, 2—Dislike a little, 3—Neither like nor dislike, 4—Like a little, 5—Like very much), 3 mini muffin formulations (chocolate, 1% S + 4% B, 2% S +8% B), were tested among consumer panelists, with 1% S + 4% B being the most acceptable based on taste, texture, color, aroma, appearance, etc. Texture (post-peak (N) of the mini muffin did not vary between chocolate and 1 S% + 4% B formulations;however, 2% S + 8% B was 1.09 times higher compared to its counterparts. pH, color, and water activity remained constant over the 9-day shelf-life period. The Spirulina and Bilberry muffins developed exhibited antioxidant activities (highest in 2% S + 8% B), and were accepted by the sensory panelists for color, taste, mouthfeel, and aroma (panelists preferred 1% S + 4% B).展开更多
The study addressed a crucial public health concern of dyslipidemia and its management, with a focus on the Ignace DEEN National Hospital patients, filling a research gap in the Republic of Guinea. It contributed valu...The study addressed a crucial public health concern of dyslipidemia and its management, with a focus on the Ignace DEEN National Hospital patients, filling a research gap in the Republic of Guinea. It contributed valuable epidemiological data on dyslipidemia in the studied population, emphasizing gender, age, and socio-professional categories, which could inform tailored prevention and management strategies in improving the health care of dyslipidemia patients by proposing diets to help these patients better manage their disease and a food system for preventing dyslipidemia. The study focused on the lipid profile of patients seen at the cardiology department at the Ignace DEEN National Hospital Republic of Guinea (Conakry). This was a prospective, descriptive study lasting six (6) months from January 24 to July 23, 2021;aimed at determining the frequency of lipid abnormalities and pathologies related to the lipid profile. A total of 523 people were included in this study with a female predominance of 59.34% compared to 40.66% of males for a ratio of 1.5 in favor of women. The age groups of 45 - 54 and 55 - 65 were the most affected with respective frequencies of 45.42% and 30.03%. The most represented socio-professional category was that of housewives, i.e. 45.78%, followed by traders 18.68%. Our series was dominated by the married couple, i.e. 77.29%. Dyslipidemia constitutes a modifiable cardiovascular risk factor in patients seen in the cardiology department at the Ignace DEEN Hospital;its control must be strict through the use of hygienic and dietary rules and hypolipidemia medications.展开更多
Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms un...Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease.展开更多
Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified ...Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified with the function of alleviating hyperuricemia.The relevant effects of L.brevis PDD-5 in lowering uric acid were analyzed by in vitro and in vivo experiments.The results showed that the L.brevis PDD-5 has(68.86±15.46)%of inosine uptake capacity and(95.75±3.30)%of guanosine uptake capacity in vitro.Oral administration of L.brevis PDD-5 to hyperuricemia rats reduced uric acid,creatinine,and urea nitrogen in serum,as well as decreased inosine and guanosine levels in the intestinal contents of rats.Analysis of relevant markers in the kidney by ELISA kits revealed that L.brevis PDD-5 alleviated oxidative stress and inflammation.Moreover,the gene expression of uric acid transporter 1(URAT1)and glucose transporter 9(GLUT9)was down-regulated,and the gene expression of organic anion transporter 1(OAT1)was up-regulated after treatment with L.brevis PDD-5.Western blot analysis showed that L.brevis PDD-5 alleviated hyperuricemia-induced kidney injury through the NLRP3 pathway.The se findings suggest that L.brevis PDD-5 can lower uric acid,repair kidney damage,and also has the potential to prevent uric acid nephropathy.展开更多
Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The ...Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The major purpose of the research study was to investigate the nutritional composition and bioactive constituents of bael pulp, as well as to develop new value-added products that maintain the maximum quantity of nutrients. The developed food products were subjected to evaluate sensory attributes according to a nine-point hedonic scale. It was found that the moisture, protein, fat, crude fiber, and total ash content of bael fruit pulp were 61.20%, 2.48%, 0.47%, 3.04%, and 1.29%, respectively. When compared to the catechin standard, the antioxidant activity of such extract indicated good antioxidant capacity, with an IC<sub>50</sub> value of 75.68 μg/ml for methanol extract. Vitamin C content was about 10.21 mg/100g. Besides, total flavonoid and phenolic contents were found as 140 mg of Quercetin Equivalent (QE)/g and 106.65 mg of Gallic Acid Equivalent (GAE)/g, respectively. Results of sensory attributes revealed that there was a significant difference (P ba and bael bar. The overall acceptability of bael murabba (6.7) and bael bar (7.1) is acceptable in quality, but their specific characteristics were found slightly different by the test panelists. These products might be applicable for the treatment of several diseases like atherosclerosis, diabetes, constipation, irritable bowel syndrome, peptic ulcer, tumor, and osteoporosis.展开更多
Most legumes and oil bean seeds used in condiment manufacture in Africa are inedible by nature. They contain antinutritional elements such indigestible oligosaccharides and phytate. Fermentation affects desired altera...Most legumes and oil bean seeds used in condiment manufacture in Africa are inedible by nature. They contain antinutritional elements such indigestible oligosaccharides and phytate. Fermentation affects desired alterations by lowering anti-nutritional components and enhancing digestibility. Okpeye is a traditional West African seasoning prepared from Prosopis africana seed solid substrate fermentation. Many homes consider it as a family business because the preparation follows a passed-down habit from previous generations as an inexpensive source of plant protein. However, natural nature of the fermentation process raises concerns about the consistency, quality, and safety of the finished product. Because the seasoning is created on a small scale with less sophisticated equipment and manufacturing procedures, there are concerns about microbial safety. Thus, fermentation process and the range of microbial composition involved in Prosopis africana okpeye production were evaluated in this review. Potential spoilage agents, as well as biochemical and nutritional changes occurring during production of okpeye are gaining interest among researcher. This review highlights information that can help in developing starter cultures in a controlled fermentation process that ensures quality, longer shelf life, and microbiological safety.展开更多
Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven prot...Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols.These protocols differed in how the different polyphenols were incorporated into the nanoemulsions.The impact of these three methods on the formation,properties,and gastrointestinal fate of nanoemulsions loaded with curcumin,resveratrol,and quercetin was investigated.The three methods produced nanoemulsions with similar initial particle properties:droplet diameters(0.15,0.16,and 0.15μm)and zeta-potentials(–59,–58,and–58 m V),respectively.However,the average encapsulation efficiencies(82%,88%,and 61%),gastrointestinal stabilities(83%,97%,and 29%)and bioaccessibilities(77%,90%,and 73%)for curcumin,resveratrol,and quercetin were somewhat different.In particular,more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods.In general,the p H-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.展开更多
The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)impro...The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)improved the structural disorder of the intestinal flora caused by continuous darkness,thereby modulating the production of metabolites related to pyruvate metabolism,glycolysis/gluconeogenesis,and tryptophan metabolism to alleviate the steady-state imbalance.After fecal microbiota transplantation from the OTP group,the single-cell transcriptomic analysis revealed that OTP significantly increased the number of hypothalamus cell clusters,up-regulated the number of astrocytes and fibroblasts,and enhanced the expression of circadian rhythm genes Cry2,Per3,Bhlhe41,Nr1d1,Nr1d2,Dbp and Rorb in hypothalamic cells.Our results confirmed that OTP can actively improve the intestinal environmental state as well as internal/peripheral circadian rhythm disorders and cognitive impairment,with potential prebiotic functional characteristics to notably contribute to host health.展开更多
Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.P...Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.Pumpkin seeds are valuable source protein which can help in eradicating protein malnutrition and lipids(rich in PUFAs)contains essential as well as non essential fatty acids which prevents from various ailments like cancer and other cardiovascular diseases.Since,seeds of pumpkin are abundant in macro(magnesium,phosphorous,potassium,sodium and calcium)and micro minerals(iron,copper,manganese,zinc and selenium),they can be used as an incredible dietary supplement which in turn helps in curbing various deficiency disorders.This review enlightens the characteristics of pumpkin seeds,process of valorization of pumpkin seeds and the effect of processing on their nutritional composition which have been studied currently with the aim to use this wonder seeds for human wellbeing.Pumpkin seeds possess many bioactive compounds like polyphenols,flavonoids,phytosterols and squalene which makes it a lucrative raw material for pharmacological and food industries.Pumpkin seeds work as anti-depressant and helps majorly in the treatment of benign prostate hyperplasia(BHP).Daily consumption of pumpkin seeds can reduce the chances of Alzheimer's and Parkinson's disease.Pumpkin seeds are rich in tocopherols and can be used for oil extraction for edible purposes and utilized in other food formulations for future use.展开更多
This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk...This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk products was examined to select a fermented milk product for AC treatment.Mice were fed to different diets for 6 weeks:high-fat(60%of total calories from fat;D1),high-dietary fibre(20%cellulose;D2),and low-fat(17.2%of total calories from fat;D3)diets to change their gut microbiomes.Subsequently,faecal microbiome was transplanted(FMT)into mice treated with high cholesterol diet contained 2%cholesterol,followed by AC or non-AC(sterile tap water,STW)treatments.Control groups with normal(NC)and highcholesterol diets(PC)were prepared for both AC and STW treatment.All experimental groups were subjected to serum and liver cholesterol,cholesterol metabolism-related(CMR)gene expression,and intestinal microbiome analyses.D3-FMT mice showed the most significant enhancements in cholesterol ratio and decreased hepatic cholesterol levels with AC treatment.Moreover,upregulation of the Cyp7a1 gene expression was observed in this group.Furthermore,the intestinal microbiome analysis indicated higher abundances of BSH-producing Eubacterium,Bifidobacterium,and Parabacteroides in the D3-FMT+AC group compare to others,potentially contributing to increased bile acid synthesis.展开更多
The cellular prion protein(PrPC),a cell surface glycoprotein of 209 amino acids,has been considerably studied over the decades mainly due to its critical involvement in transmissible spongiform encephalopathies,or pri...The cellular prion protein(PrPC),a cell surface glycoprotein of 209 amino acids,has been considerably studied over the decades mainly due to its critical involvement in transmissible spongiform encephalopathies,or prion diseases.Indeed,it is the misfolding and aggregation of PrPC into pathological assemblies-named PrPSc-that constitute prions,the agents causing these unusual neurodegenerative diseases affecting humans and animals(Prusiner,1982).Furthermore,increasing evidence support its relevance also in other neurodegenerative diseases(NDDs),such as Alzheimer’s and Parkinson’s diseases(Corbett et al.,2020).展开更多
λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degr...λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degradation.Based on the genome mining,a novelλ-carrageenase Cgl150A_Wa was cloned from the bacterium Wenyingzhuangia aestuarii and expressed in Escherichia coli.Cgl150A_Wa was an endo-acting enzyme and exhibited its maximum activity at 30℃and pH 8.0.By employing a glycomics strategy that combined ultra-performance liquid chromatography-mass spectrometry analysis and glycoinformatics,Cgl150A_Wa was proven to degradeλ-carrageenan octaose and hexaose,and the major hydrolysis product of Cgl150A_Wa wasλ-carrageenan tetrose.In addition to the typicalλ-carrageenan motifs,the active center of Cgl150A_Wa might tolerate desulfatedλ-carrageenan motifs.Cgl150A_Wa is a potential biotechnological tool for preparingλ-carrageenan oligosaccharides and structural investigation.展开更多
Numerous studies currently compare the lipid metabolism in patients with cardiovascular disease(CVD)and healthy individuals to identify lipid markers for predicting CVD.In this study,multidimensional mass spectrometry...Numerous studies currently compare the lipid metabolism in patients with cardiovascular disease(CVD)and healthy individuals to identify lipid markers for predicting CVD.In this study,multidimensional mass spectrometry-based shotgun lipidomics was used to examine the serum lipidomics of participants in a clinical randomized controlled feeding trial undergoing olive oil(OO),camellia seed oil(CSO),and soybean oil(SO)dietary interventions.189 lipid molecules are identified,including 14 species of phosphatidylinositol,45 species of ethanolamine glycerols(PE),47 species of choline glycerophospholipids(PC),39 species of triacylglycerols(TAG),18 species of lysophosphatidylcholine,and 26 species of sphingomyelin.After screening,10 lipid markers are found,among which 18:2 fatty acid(FA),16:1 FA,C54:4/C55:11,C54:3/C55:10,and C52:3/C53:10 in TAG pool,p18:0/20:0 and a18:0/18:1 in PC pool,and p18:1/20:4 in PE pool have differential regulation in the SO group compared to OO and CSO.The d16:0/18:1 in PC pool and C52:2/C53:9 in TAG pool are differentially regulated by OO and CSO.The C52:2/C53:9 in TAG pool has a significant negative correlation with aspartate aminotransferase(r=-0.363,P=0.048)and high-density lipoprotein cholesterol(r=-0.519,P<0.01).This study provides a reference for researching the effect of dietary fat on blood lipid metabolism.展开更多
Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not bee...Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.展开更多
Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibi...Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.展开更多
The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders....The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.展开更多
基金supported by Brain Korea (BK)21 Plus Project (4299990913942)funded by the Korean Government,Koreathe Collabo Project funded by the Ministry of SMEs and Startups (C1016120-01-02)the National Research Foundation of Korea (NRF) (2018007551)。
文摘Slightly acidic electrolyzed water(SAEW)has proven to be an efficient and novel sanitizer in food and agriculture field.This study assessed the efficacy of SAEW(30 mg/L)at 40℃on the inactivation of foodbome pathogens and detachment of multi-resistant Staphylococcus aureus(MRSA)biofilm.Furthermore.the underlying mechanism of MRS A biofilm under heated SAEW at 40℃treatment on metabolic profiles was investigated.The results showed that the heated SAEW at 40℃significantly effectively against foodbome pathogens of 1.96-7.56(lg(CFU/g))reduction in pork,chicken,spinach,and lettuce.The heated SAEW at 40℃treatment significantly reduced MRS A biofilm cells by 2.41(lg(CFU/cm^(2))).The synergistic effect of SAEW treatment showed intense anti-biofilm activity in decreasing cell density and impairing biofilm cell membranes.Global metabolic response of MRSA biofilms,treated by SAEW at 40℃,revealed the alterations of intracellular metabolites,including amino acids,organic acid,fatty acid,and lipid.Moreover,signaling pathways involved in amino acid metabolism,energy metabolism,nucleotide synthesis,carbohydrate metabolites,and lipid biosynthesis were functionally disrupted by the SAEW at 40℃treatment.As per our knowledge,this is the first research to uncover the potential mechanism of heated SAEW treatment against MRSA biofilm on food contact surface.
基金supported by the National Natural Science Foundation of China (32102605)the Agricultural Science and Technology Innovation Program under Grant (CAAS-ASTIP-2020IAR)the Earmarked Fund for CARS (CARS-44)。
文摘Food allergens are mainly naturally-occurring proteins with immunoglobulin E(IgE)-binding epitopes.Understanding the structural and immunogenic characteristics of allergenic proteins is essential in assessing whether and how food processing techniques reduce allergenicity.We here discuss the impacts of food processing technologies on the modification of physicochemical,structural,and immunogenic properties of allergenic proteins.Detection techniques for characterizing changes in these properties of food allergens are summarized.Food processing helps to reduce allergenicity by aggregating or denaturing proteins,which masks,modifies,or destroys antigenic epitopes,whereas,it cannot eliminate allergenicity completely,and sometimes even improves allergenicity by exposing new epitopes.Moreover,most food processing techniques have been tested on purified food allergens rather than food products due to potential interference of other food components.We provide guidance for further development of processing operations that can decrease the allergenicity of allergenic food proteins without negatively impacting the nutritional profile.
基金the Ministry of Higher Education,Malaysia for financial support via the Transdisciplinary Research Grant Scheme Project(Grant No.TRGS/1/2020/UPM/02/7)。
文摘Glutinous rice(Oryza sativa var.glutinosa)stands out as one of the most popular rice varieties globally,amidst thousands of rice cultivars.Its increasing popularity is attributed to its rich nutritional compositions and health benefits.This review aims to summarize the nutritional compositions,volatile compounds,and health benefits of glutinous rice.Further,in-depth studies are necessary to explore the utilization of glutinous rice in enhancing processing technologies and developing new food products.Glutinous rice has been shown to possess numerous health benefits,including antioxidant activity,bioactive compounds,anti-cancer properties,anti-inflammatory effects,anti-diabetic potential,and cholesterol-lowering effects.Besides its nutritional compositions,the major volatile compounds identified in glutinous rice could serve as a functional food for human consumption.Emerging processing technologies related to glutinous rice are elaborated to improve the latest developments for incorporating them into various food products.
基金sponsored by the National Natural Science Foundation China(32270115)National Key R&D Program of China(2018YFD0901102)+1 种基金Fundamental Research Funds for the Provincial Universities of Zhejiang(SJLY2021015)K.C.Wong Magna Fund of Ningbo University。
文摘Hyperuricemia,a metabolic disorder related to uric acid metabolism dysregulation,has become a common metabolic disease worldwide,due to changes in lifestyle and dietary structure.In recent years,owing to their high activity and few adverse effects,food-derived active peptides used as functional foods against hyperuricemia have attracted increasing attention.This article aims to focus on the challenge associated with peptide-specific preparation methods development,functional components identification,action mechanism(s)clarification,and bioavailability improvement.The current review proposed recent advances in producing the food-derived peptides with high anti-hyperuricemia activity by protein source screening and matched enzymatic hydrolysis condition adjusting,increased the knowledge about strategies to search antihyperuricemia peptides with definite structure,and emphasized the necessity of combining computer-aided approaches and activity evaluations.In addition,novel action mechanism mediated by gut microbiota was discussed,providing different insights from classical mechanism.Moreover,considering that little attention was paid previously on the structure-activity relationships of anti-hyperuricemia peptides,we collected the sequences from published studies and make a preliminary summary about the structure-activity relationships,which in turn provided guides for enzymatic hydrolysis optimization and bioavailability improvement.Hopefully,this article could promote the development,application and commercialization of food-derived anti-hyperuricemia peptides in the future.
文摘Spirulina, a protein-rich cyanobacterium, and Bilberry, a dark berry, have the potential to be used as functional food ingredients in the food industry. These two underexplored and underutilized ingredients were used to develop an adolescent-friendly functional snack food product in the light of food industry trends. Stages of product development, shelf life/physiochemical analysis (texture, pH, color, and water activity) and sensory evaluation were utilized in developing a functional snack mini muffin containing Spirulina and Bilberry. Aqueous (AQ) and 80% ethanol (ET) extracts of mini muffin formulations (chocolate, 1% Spirulina (S) + 4% Bilberry (B), 2% Spirulina (S) + 8% Bilberry (B)) were prepared using a standard protocol. Antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Potential (FRAP) assays. Utilizing a 5-point hedonic scale (1—Dislike very much, 2—Dislike a little, 3—Neither like nor dislike, 4—Like a little, 5—Like very much), 3 mini muffin formulations (chocolate, 1% S + 4% B, 2% S +8% B), were tested among consumer panelists, with 1% S + 4% B being the most acceptable based on taste, texture, color, aroma, appearance, etc. Texture (post-peak (N) of the mini muffin did not vary between chocolate and 1 S% + 4% B formulations;however, 2% S + 8% B was 1.09 times higher compared to its counterparts. pH, color, and water activity remained constant over the 9-day shelf-life period. The Spirulina and Bilberry muffins developed exhibited antioxidant activities (highest in 2% S + 8% B), and were accepted by the sensory panelists for color, taste, mouthfeel, and aroma (panelists preferred 1% S + 4% B).
文摘The study addressed a crucial public health concern of dyslipidemia and its management, with a focus on the Ignace DEEN National Hospital patients, filling a research gap in the Republic of Guinea. It contributed valuable epidemiological data on dyslipidemia in the studied population, emphasizing gender, age, and socio-professional categories, which could inform tailored prevention and management strategies in improving the health care of dyslipidemia patients by proposing diets to help these patients better manage their disease and a food system for preventing dyslipidemia. The study focused on the lipid profile of patients seen at the cardiology department at the Ignace DEEN National Hospital Republic of Guinea (Conakry). This was a prospective, descriptive study lasting six (6) months from January 24 to July 23, 2021;aimed at determining the frequency of lipid abnormalities and pathologies related to the lipid profile. A total of 523 people were included in this study with a female predominance of 59.34% compared to 40.66% of males for a ratio of 1.5 in favor of women. The age groups of 45 - 54 and 55 - 65 were the most affected with respective frequencies of 45.42% and 30.03%. The most represented socio-professional category was that of housewives, i.e. 45.78%, followed by traders 18.68%. Our series was dominated by the married couple, i.e. 77.29%. Dyslipidemia constitutes a modifiable cardiovascular risk factor in patients seen in the cardiology department at the Ignace DEEN Hospital;its control must be strict through the use of hygienic and dietary rules and hypolipidemia medications.
文摘Soluble receptor for advanced glycation end products(sRAGE)acts as a decoy sequestering of RAGE ligands,thus preventing the activation of the ligand-RAGE axis linking human diseases.However,the molecular mechanisms underlying sRAGE remain unclear.In this study,THP-1 monocytes were cultured in normal glucose(NG,5.5 mmol/L)and high glucose(HG,15 mmol/L)to investigate the effects of diabetesrelevant glucose concentrations on sRAGE and interleukin-1β(IL-1β)secretion.The modulatory effects of epigallocatechin gallate(EGCG)in response to HG challenge were also evaluated.HG enhanced intracellular reactive oxygen species(ROS)generation and RAGE expression.The secretion of sRAGE,including esRAGE and cRAGE,was reduced under HG conditions,together with the downregulation of a disintegrin and metallopeptidase 10(ADAM10)and nuclear factor erythroid 2-related factor 2(Nrf2)nuclear translocation.Mechanistically,the HG effects were counteracted by siRAGE and exacerbated by siNrf2.Chromatin immunoprecipitation results showed that Nrf2 binding to the ADAM10 promoter and HG interfered with this binding.Our data reinforce the notion that RAGE and Nrf2 might be sRAGE-regulating factors.Under HG conditions,the treatment of EGCG reduced ROS generation and RAGE activation.EGCG-stimulated cRAGE release was likely caused by the upregulation of the Nrf2-ADAM10 pathway.EGCG inhibited HG-mediated NLRP3 inflammasome activation at least partly by stimulating sRAGE,thereby reducing IL-1βrelease.
基金the National Natural Science Foundation of China(31972048,32272339)the National Key R&D Program of China(2021YFD2100104)for financial support。
文摘Hyperuricemia is a metabolic disorder caused by abnormal purine metabolism,resulting in abnormally high serum uric acid.In this study,a novel Levilactobacillus brevis PDD-5 isolated from salty vegetables was verified with the function of alleviating hyperuricemia.The relevant effects of L.brevis PDD-5 in lowering uric acid were analyzed by in vitro and in vivo experiments.The results showed that the L.brevis PDD-5 has(68.86±15.46)%of inosine uptake capacity and(95.75±3.30)%of guanosine uptake capacity in vitro.Oral administration of L.brevis PDD-5 to hyperuricemia rats reduced uric acid,creatinine,and urea nitrogen in serum,as well as decreased inosine and guanosine levels in the intestinal contents of rats.Analysis of relevant markers in the kidney by ELISA kits revealed that L.brevis PDD-5 alleviated oxidative stress and inflammation.Moreover,the gene expression of uric acid transporter 1(URAT1)and glucose transporter 9(GLUT9)was down-regulated,and the gene expression of organic anion transporter 1(OAT1)was up-regulated after treatment with L.brevis PDD-5.Western blot analysis showed that L.brevis PDD-5 alleviated hyperuricemia-induced kidney injury through the NLRP3 pathway.The se findings suggest that L.brevis PDD-5 can lower uric acid,repair kidney damage,and also has the potential to prevent uric acid nephropathy.
文摘Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The major purpose of the research study was to investigate the nutritional composition and bioactive constituents of bael pulp, as well as to develop new value-added products that maintain the maximum quantity of nutrients. The developed food products were subjected to evaluate sensory attributes according to a nine-point hedonic scale. It was found that the moisture, protein, fat, crude fiber, and total ash content of bael fruit pulp were 61.20%, 2.48%, 0.47%, 3.04%, and 1.29%, respectively. When compared to the catechin standard, the antioxidant activity of such extract indicated good antioxidant capacity, with an IC<sub>50</sub> value of 75.68 μg/ml for methanol extract. Vitamin C content was about 10.21 mg/100g. Besides, total flavonoid and phenolic contents were found as 140 mg of Quercetin Equivalent (QE)/g and 106.65 mg of Gallic Acid Equivalent (GAE)/g, respectively. Results of sensory attributes revealed that there was a significant difference (P ba and bael bar. The overall acceptability of bael murabba (6.7) and bael bar (7.1) is acceptable in quality, but their specific characteristics were found slightly different by the test panelists. These products might be applicable for the treatment of several diseases like atherosclerosis, diabetes, constipation, irritable bowel syndrome, peptic ulcer, tumor, and osteoporosis.
文摘Most legumes and oil bean seeds used in condiment manufacture in Africa are inedible by nature. They contain antinutritional elements such indigestible oligosaccharides and phytate. Fermentation affects desired alterations by lowering anti-nutritional components and enhancing digestibility. Okpeye is a traditional West African seasoning prepared from Prosopis africana seed solid substrate fermentation. Many homes consider it as a family business because the preparation follows a passed-down habit from previous generations as an inexpensive source of plant protein. However, natural nature of the fermentation process raises concerns about the consistency, quality, and safety of the finished product. Because the seasoning is created on a small scale with less sophisticated equipment and manufacturing procedures, there are concerns about microbial safety. Thus, fermentation process and the range of microbial composition involved in Prosopis africana okpeye production were evaluated in this review. Potential spoilage agents, as well as biochemical and nutritional changes occurring during production of okpeye are gaining interest among researcher. This review highlights information that can help in developing starter cultures in a controlled fermentation process that ensures quality, longer shelf life, and microbiological safety.
基金the supporting from the USDA National Institute of Food and Agriculture,Agricultural and Food Research Initiative Competitive Program(2020-03921)partly supported by funding from the Good Food Institute。
文摘Simple but effective methods are required to incorporate multiple bioactive polyphenols into delivery systems to increase their dispersibility,stability and bioavailability.We developed and tested three p Hdriven protocols for creating nanoemulsions loaded with multiple lipophilic polyphenols.These protocols differed in how the different polyphenols were incorporated into the nanoemulsions.The impact of these three methods on the formation,properties,and gastrointestinal fate of nanoemulsions loaded with curcumin,resveratrol,and quercetin was investigated.The three methods produced nanoemulsions with similar initial particle properties:droplet diameters(0.15,0.16,and 0.15μm)and zeta-potentials(–59,–58,and–58 m V),respectively.However,the average encapsulation efficiencies(82%,88%,and 61%),gastrointestinal stabilities(83%,97%,and 29%)and bioaccessibilities(77%,90%,and 73%)for curcumin,resveratrol,and quercetin were somewhat different.In particular,more quercetin degradation occurred using the approach that held it under alkaline conditions for extended periods.In general,the p H-driven method provides researchers with a versatile approach of incorporating multiple polyphenols with different characteristics into functional food and beverages using a simple and inexpensive method.
基金sponsored by the Ningbo Natural Science Foundation(2021J107)。
文摘The interaction between host circadian rhythm and gut microbes through the gut-brain axis provides new clues for tea polyphenols to improve host health.Our present research showed that oolong tea polyphenols(OTP)improved the structural disorder of the intestinal flora caused by continuous darkness,thereby modulating the production of metabolites related to pyruvate metabolism,glycolysis/gluconeogenesis,and tryptophan metabolism to alleviate the steady-state imbalance.After fecal microbiota transplantation from the OTP group,the single-cell transcriptomic analysis revealed that OTP significantly increased the number of hypothalamus cell clusters,up-regulated the number of astrocytes and fibroblasts,and enhanced the expression of circadian rhythm genes Cry2,Per3,Bhlhe41,Nr1d1,Nr1d2,Dbp and Rorb in hypothalamic cells.Our results confirmed that OTP can actively improve the intestinal environmental state as well as internal/peripheral circadian rhythm disorders and cognitive impairment,with potential prebiotic functional characteristics to notably contribute to host health.
基金The authors would like to thank Harcourt Butler Technical University,Kanpur India for providing infrastructure,guidance,knowledge and support.
文摘Pumpkin belongs to the family of Cucurbitaceae,which comprises several species that has economical as well as agronomical importance.All parts of pumpkin are edible and laden with beneficial neutraceutical compounds.Pumpkin seeds are valuable source protein which can help in eradicating protein malnutrition and lipids(rich in PUFAs)contains essential as well as non essential fatty acids which prevents from various ailments like cancer and other cardiovascular diseases.Since,seeds of pumpkin are abundant in macro(magnesium,phosphorous,potassium,sodium and calcium)and micro minerals(iron,copper,manganese,zinc and selenium),they can be used as an incredible dietary supplement which in turn helps in curbing various deficiency disorders.This review enlightens the characteristics of pumpkin seeds,process of valorization of pumpkin seeds and the effect of processing on their nutritional composition which have been studied currently with the aim to use this wonder seeds for human wellbeing.Pumpkin seeds possess many bioactive compounds like polyphenols,flavonoids,phytosterols and squalene which makes it a lucrative raw material for pharmacological and food industries.Pumpkin seeds work as anti-depressant and helps majorly in the treatment of benign prostate hyperplasia(BHP).Daily consumption of pumpkin seeds can reduce the chances of Alzheimer's and Parkinson's disease.Pumpkin seeds are rich in tocopherols and can be used for oil extraction for edible purposes and utilized in other food formulations for future use.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2019R1A2C2004356).
文摘This study investigated if the variation in the effect of anti-cholesterol(AC)treatment on individual mice are related to gut microbiome composition.The bile salt hydrolase(BSH)activity of 23 commercial fermented milk products was examined to select a fermented milk product for AC treatment.Mice were fed to different diets for 6 weeks:high-fat(60%of total calories from fat;D1),high-dietary fibre(20%cellulose;D2),and low-fat(17.2%of total calories from fat;D3)diets to change their gut microbiomes.Subsequently,faecal microbiome was transplanted(FMT)into mice treated with high cholesterol diet contained 2%cholesterol,followed by AC or non-AC(sterile tap water,STW)treatments.Control groups with normal(NC)and highcholesterol diets(PC)were prepared for both AC and STW treatment.All experimental groups were subjected to serum and liver cholesterol,cholesterol metabolism-related(CMR)gene expression,and intestinal microbiome analyses.D3-FMT mice showed the most significant enhancements in cholesterol ratio and decreased hepatic cholesterol levels with AC treatment.Moreover,upregulation of the Cyp7a1 gene expression was observed in this group.Furthermore,the intestinal microbiome analysis indicated higher abundances of BSH-producing Eubacterium,Bifidobacterium,and Parabacteroides in the D3-FMT+AC group compare to others,potentially contributing to increased bile acid synthesis.
基金supported by the Ministero della Salute(grant No.RF-2016-02364498,to NR).
文摘The cellular prion protein(PrPC),a cell surface glycoprotein of 209 amino acids,has been considerably studied over the decades mainly due to its critical involvement in transmissible spongiform encephalopathies,or prion diseases.Indeed,it is the misfolding and aggregation of PrPC into pathological assemblies-named PrPSc-that constitute prions,the agents causing these unusual neurodegenerative diseases affecting humans and animals(Prusiner,1982).Furthermore,increasing evidence support its relevance also in other neurodegenerative diseases(NDDs),such as Alzheimer’s and Parkinson’s diseases(Corbett et al.,2020).
基金supported by the Fundamental Research Funds for the Central Universities(No.202012020)the National Key R&D Program of China(No.2018YFC 0311203).
文摘λ-Carrageenan is a highly sulfated polysaccharide alternating of 1,4-O-α-D-galactopyranose-2,6-sulfate(D2S,6S)and 1,3-O-β-D-galactopyranose-2-sulfate(G2S).λ-Carrageenases are desirable tools forλ-carrageenan degradation.Based on the genome mining,a novelλ-carrageenase Cgl150A_Wa was cloned from the bacterium Wenyingzhuangia aestuarii and expressed in Escherichia coli.Cgl150A_Wa was an endo-acting enzyme and exhibited its maximum activity at 30℃and pH 8.0.By employing a glycomics strategy that combined ultra-performance liquid chromatography-mass spectrometry analysis and glycoinformatics,Cgl150A_Wa was proven to degradeλ-carrageenan octaose and hexaose,and the major hydrolysis product of Cgl150A_Wa wasλ-carrageenan tetrose.In addition to the typicalλ-carrageenan motifs,the active center of Cgl150A_Wa might tolerate desulfatedλ-carrageenan motifs.Cgl150A_Wa is a potential biotechnological tool for preparingλ-carrageenan oligosaccharides and structural investigation.
基金funded by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(2023C02044)the Key Research and Development Program for Science and Technology Projects of Zhejiang Province(2017C02003)The funding sources played no role in the study design,study implementation,data analysis,or manuscript preparation.Science and Technology Projects of Zhejiang Province(2017C02003).
文摘Numerous studies currently compare the lipid metabolism in patients with cardiovascular disease(CVD)and healthy individuals to identify lipid markers for predicting CVD.In this study,multidimensional mass spectrometry-based shotgun lipidomics was used to examine the serum lipidomics of participants in a clinical randomized controlled feeding trial undergoing olive oil(OO),camellia seed oil(CSO),and soybean oil(SO)dietary interventions.189 lipid molecules are identified,including 14 species of phosphatidylinositol,45 species of ethanolamine glycerols(PE),47 species of choline glycerophospholipids(PC),39 species of triacylglycerols(TAG),18 species of lysophosphatidylcholine,and 26 species of sphingomyelin.After screening,10 lipid markers are found,among which 18:2 fatty acid(FA),16:1 FA,C54:4/C55:11,C54:3/C55:10,and C52:3/C53:10 in TAG pool,p18:0/20:0 and a18:0/18:1 in PC pool,and p18:1/20:4 in PE pool have differential regulation in the SO group compared to OO and CSO.The d16:0/18:1 in PC pool and C52:2/C53:9 in TAG pool are differentially regulated by OO and CSO.The C52:2/C53:9 in TAG pool has a significant negative correlation with aspartate aminotransferase(r=-0.363,P=0.048)and high-density lipoprotein cholesterol(r=-0.519,P<0.01).This study provides a reference for researching the effect of dietary fat on blood lipid metabolism.
基金Support for this student's (Lauren Brewer) training project is provided by USDA National Needs Graduate Fellowship Competitive Grant No. 2008-38420-04773 from the National Institute of Food and Agriculturenumber 12-473-J from the Kansas Agricultural Experiment Stationfinancially supported by Mahasarakham University.
文摘Mature wheat kernels contain three main parts:endosperm,bran,and germ.Flour milling results in multiple streams that are chemically different;however,the distribution of antioxidants and phenolic compounds has not been well documented in terms of conventional milling by-product streams.In this study,multiple analytical methods were used to investigate antioxidant activity and phenolic compound compositions of hard red winter wheat(whole ground wheat),the parts of a wheat kernel(bran,flour,germ),and wheat by-product streams(mill feed,red dog,shorts)for the first time.For each mill stream,phenolic compounds(total,flavonoid,and anthocyanin contents)were determined and antioxidant activities were evaluated with 1,1-diphenyl-2-picrylhydrazyl(DPPH)radical-scavenging activity,ferric reducing/antioxidant power(FRAP),and total antioxidant capacity assays.Significant differences(P<0.05)were observed in phenolic concentrations among fractions of bran,flour,and germ milled from the same kernels and noted that germ accounts for the majority of antioxidant properties,whereas bran contains a substantial portion of phenolic compounds and anthocyanins.Mill feed was high in phenolic content(5.29 mg FAE/g),total antioxidant capacity(866 mg/g),and antioxidant activity(up to 75% DPPH inhibition and 20.26μmol FeSO_(4)/g).The comprehensive information on distribution of antioxidants and phenolic compounds provides insights for future human consumption of commonly produced co-products from flour milling,and for selecting and using different milling fractions to make foods with improved nutritional properties.
基金support from the High Level Scientific Research Cultivation Project of Huanggang Normal University(202108504)from the National Natural Science Foundation of China(31571832)。
文摘Glycation of proteins and DNA forms advanced glycation end products(AGEs)causing cell and tissue dysfunction and subsequent various chronic diseases,in particular,metabolic and age-related diseases.Targeted AGE inhibition includes scavengers of reactive carbonyl species(RCS)such as methylglyoxal(MG),glyoxalase-1 enhancers,Nrf2/ARE pathway activators,AGE/RAGE formation inhibitors and other antiglycatng agents.Citrus flavonoids have demonstrated antioxidant and anti-inflammatory effects and are also found to be effective antiglycating agents.Herein,we reviewed the up to date progress of the antiglycation effects of citrus flavonoids and associated mechanisms.Major citrus flavonoids,hesperedin and its aglycone,hesperetin,inhibited glycation by scavenging MG forming mono-or di-flavonoid adducts with MG,enhanced the activity of glyoxase-1,activated Akt/Nrf2 signal pathway while inhibiting AGE/RAGE/NF-κB pathway,reduced the formation of Nε-(carboxylmethyl)lysine(CML)and pentosidine,inhibited aldol reductase activity and decreased the levels of fructosamine.The antiglycating activity and mechanisms of other flavonoids was also summarized in this review.In conclusion,citrus flavonoids possess effective antiglycating activity via different mechanisms,yet there are many challenging questions remaining to be studied in the near future such as in vivo testing and human study of citrus flavonoids for efficacy,effectiveness and adverse effects of citrus flavonoids as a functional food in managing high levels of AGEs and controlling AGE-induced chronic diseases,diabetic complications in particular.
基金financially supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2019ZT08N291)the National Natural Science Foundation of China (31901689)the Natural Science Foundation of Guangdong Province,China (2021A1515012124)。
文摘The interplay between the host circadian clock and microbiota has significant influences on host metabolism processes,and circadian desynchrony triggered by high-fat diet(HFD)is closely related to metabolic disorders.In this study,the modulatory effects of piperine(PIP)on lipid metabolism homeostasis,gut microbiota community and circadian rhythm of hepatic clock gene expressions in obese rats were investigated.The Sprague-Dawley(SD)rats were fed with normal diet(ND),HFD and HFD supplemented with PIP,respectively.After 9 weeks,rats were sacrificed with tissue and fecal samples collected for circadian analysis.Results showed that chronic PIP administration ameliorated the obesity-induced alterations in lipid metabolism and dysregulation of hepatic clock gene expressions in obese rats.The gut microbial communities studied through 16S rRNA sequencing showed that PIP ameliorated the imbalanced nicrobiota and recovered the circadian rhythm of Lactobacillaceae,Desulfovibrionaceae,Paraprevotellaceae,and Lachnospiraceae.The fecal metabolic profiles indicated that 3-dehydroshikimate,cytidine and lithocholyltaurine were altered,which were involved in the amino acid and fatty acid metabolism process.These findings could provide theoretical basis for PIP to work as functional food to alleviate the lipid metabolism disorder,circadian rhythm misalignment,and gut microbiota dysbiosis with wide applications in the food and pharmaceutic industries.