Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Lut...Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development.展开更多
Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties.It also exhibits significant anti-tumor activity,suppressing tumor growth in vitro and in vivo.The curre...Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties.It also exhibits significant anti-tumor activity,suppressing tumor growth in vitro and in vivo.The current body of research on Britanin includes thirty papers predominantly related to neoplasms,the majority of which are gastrointestinal tumors that have not been summarized before.To drive academic debate,the present paper reviews the available research on Britanin in gastrointestinal tumors.It also outlines novel research directions using data not directly concerned with the digestive system,but which could be adopted in future gastrointestinal research.Britanin was found to counteract liver,colorectal,pancreatic,and gastric tumors,by regulating proliferation,apoptosis,autophagy,immune response,migration,and angiogenesis.As confirmed in pancreatic,gastric,and liver cancer,its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation,as well as Bcl-2-associated X protein upregulation.Moreover,it has been found to induce the Akt kinase and Forkhead box O1 axis,activate the AMP-activated protein kinase pathway,elevate interleukin-2 and peroxisome proliferator-activated receptor-γlevels,reduce interleukin-10,as well as downregulate matrix metalloproteinase-9,Twist family bHLH transcription factor 1,and cyclooxygenase-2.It also inhibits Myc–HIF1αinteraction and programmed death ligand 1 transcription by interrupting the Ras/RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling.Future research should aim to unravel the link between Britanin and acetylcholinesterase,mast cells,osteolysis,and ischemia,as compelling data have been provided by studies outside the gastrointestinal context.Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells,while still being effective against the latter,further in-depth studies with the use of animal models are merited.The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent,which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.展开更多
In accordance with the World Health Organization data,cancer remains at the forefront of fatal diseases.An upward trend in cancer incidence and mortality has been observed globally,emphasizing that efforts in developi...In accordance with the World Health Organization data,cancer remains at the forefront of fatal diseases.An upward trend in cancer incidence and mortality has been observed globally,emphasizing that efforts in developing detection and treatment methods should continue.The diagnostic path typically begins with learning the medical history of a patient;this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy.Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization.Thus,there is a need for novel cancer detection methods such as liquid biopsy,elastography,synthetic biosensors,fluorescence imaging,and reflectance confocal microscopy.Conventional therapeutic methods,although still common in clinical practice,pose many limitations and are unsatisfactory.Nowadays,there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy,exosome-based therapy,nanotechnology,dendritic cells,chimeric antigen receptors,immune checkpoint inhibitors,natural product-based therapy,tumor-treating fields,and photodynamic therapy.The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions.As evidenced,modern methods are not without drawbacks;there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity,specificity,safety,and efficacy.Nevertheless,an appropriate route has been taken,as confirmed by the approval of some modern methods by the Food and Drug Administration.展开更多
Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embry...Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embryonic development.Therefore,we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.Results We cultured porcine in vitro-fertilized embryos in medium with AN(0,0.3,0.5,and 1 mg/mL)for 6 d.AN at 0.5 mg/mL significantly increased the blastocyst formation rate,trophectoderm cell number,and cellular survival rate compared to the control.AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control.Moreover,AN significantly improved the quantity of mitochondria and mitochondrial membrane potential,and increased the lipid droplet,fatty acid,and ATP levels.Interestingly,the levels of proteins and genes related to the sonic hedgehog(SHH)signaling pathway were significantly increased by AN.Conclusions These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.展开更多
Maintenance of protein homeostasis or“proteostasis”is essential for the functioning and viability of cells.This is in particular the case for cells like neurons that cannot self-renew and acquire unique functional p...Maintenance of protein homeostasis or“proteostasis”is essential for the functioning and viability of cells.This is in particular the case for cells like neurons that cannot self-renew and acquire unique functional properties during their lifetime.Cellular proteostatic stress responses are in place to protect cells from damage in case of proteostatic challenges.The integrated stress response(ISR)is one of the key proteostatic stress responses in the cell(Costa-Mattioli and Walter,2020).The ISR is the downstream convergence point for the four stress-induced eIF2αkinases(EIF2AK1-4)that control stress-regulated protein translation via phosphorylation of the translation factor eIF2α.ISR activation results in a transient reduction of global translation while it concomitantly enhances the translation of specific mRNAs,including that encoding the activating transcription factor 4(ATF4).Together,the translational control mediated by the ISR results in a temporary reduction of the overall protein load and the selectively increased expression of proteins that contribute to restoration of the proteostatic balance.展开更多
AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through ...AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through western blotting,mitogenic signaling was observed.Endogenous ROS from wild and HBx transgenic mice and HepG2-Mock and HBx cells were assayed by FACS-calibur.Identification of oxidized and reduced phosphatase and tensin homolog(PTEN)was analyzed through N-ethylmaleimide alkylation,nonreducing electrophoresis.RESULTS:We observed that the cell-proliferation-related phosphoinositide 3-kinase/Akt pathway is activated by HBx in vivo and in vitro.Increased ROS were detected by HBx.Tumor suppressor PTEN,via dephosphorylation of Akt,was oxidized and inactivated by increased ROS.Increased oxidized PTEN activated the mitogenic pathway through over-activated Akt.However,treatment with ROS scavenger N-acetyl cysteine can reverse PTEN to a reduced form.Endogenously produced ROS also stimulated HBx expression.CONCLUSION:HBx induced ROS promoted Akt pathways via oxidized inactive PTEN.HBx and ROS maintained a positive regulatory loop,which aggravated carcinogenesis.展开更多
Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplif...Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr viruspositive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.展开更多
BACKGROUND Alopecia areata(AA)is a common autoimmune disease characterized by hair loss.AA appears in extensive forms,such as progressive and diffusing hair loss(diffuse AA),a total loss of scalp hair(alopecia totalis...BACKGROUND Alopecia areata(AA)is a common autoimmune disease characterized by hair loss.AA appears in extensive forms,such as progressive and diffusing hair loss(diffuse AA),a total loss of scalp hair(alopecia totalis),and complete loss of hair over the entire body(alopecia universalis).Recently,mesenchymal stem cells(MSCs)have been identified as a therapeutic alternative for autoimmune diseases.For this reason,preclinical and case studies of AA and related diseases using MSCs have been conducted.CASE SUMMARY Case 1:A 55-year-old woman suffered from AA in two areas of the scalp.She was given 15 rounds of minimally manipulated umbilical cord-MSCs(MM-UC-MSCs)over 6 mo.The AA gradually improved 3 mo after the first round.The patient was cured,and AA did not recur.Case 2:A 30-year-old woman,with history of local steroid hormone injections,suffered from AA in one area on the scalp.She was given two rounds of MM-UC-MSCs over 1 mo.The AA immediately improved after the first round.The patient was cured,and AA did not recur.Case 3:A 20-year-old woman,who was diagnosed with alopecia universalis at the age of 12,was given 14 rounds of MM-UC-MSCs over 12 mo.Her hair began to grow about 3 mo after the first round.The patient was cured,and alopecia universalis did not recur.CONCLUSION MM-UC-MSC transplantation potentially treats patients who suffer from AA and related diseases.展开更多
Background: Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0-14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. H...Background: Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0-14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results: One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P〈O.05) and thyroid hormone receptor o (TRo) (P〈O.05), and down-regulation of growth hormone receptor (GHR) (P〈O.01) and IGF-I (P〈O.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P〈O.05) and of TRa was lower (P〈O.01) than in IF cells, suggesting that RF restored the mRNA expression of TRa and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P〈O.05), indicating that RF reduced the pro-apoptotic influence of iF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P〈O.O01) or RF (P〈O.05) cells. Conclusions: These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.展开更多
Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness,the latter is one responsible for potentiating the resistance to treatment,inter alia due to increased invasiveness.I...Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness,the latter is one responsible for potentiating the resistance to treatment,inter alia due to increased invasiveness.In recent years,glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements,whereas the impact of the cytoskeleton on invasiveness is well known.Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells(GSCs),these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells.This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism,as they may provide new invasion-related insights.Previously,we proved that interplay between metabolism and cytoskeleton existed in glioblastoma.Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved,not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness.Thus,dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future.Herein,we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.展开更多
Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,app...Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.展开更多
AIM: To elucidate the sequential gene expression profile in AGS cells co-cultured with wild-type Helicobacter pylori (H pylon) as a model of Hpylori-infected gastric epithelium, and to further examine the contribut...AIM: To elucidate the sequential gene expression profile in AGS cells co-cultured with wild-type Helicobacter pylori (H pylon) as a model of Hpylori-infected gastric epithelium, and to further examine the contribution of cag-pathogenicity islands (cagPAI)-coding type IV secretion system and the two pathways, nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinases (ERK) on wild-type Hpylori-induced gene expression. METHODS: Gene expression profiles induced by Hpylori were evaluated in AGS gastric epithelial cells using cDNA microarray, which were present in the 4600 independent clones picked up from the human gastric tissue. We also analyzed the contribution of NF-κB and ERK signaling on H pylori-induced gene expression by using inhibitors of specific signal pathways. The isogenic mutant with disrupted cagE (△cagE) was used to elucidate the role of cagPAI-encoding type IV secretion system in the gene expression profile. RESULTS: According to the expression profile, the genes were classified into four clusters. Among them, the clusters characterized by continuous upregulation were most conspicuous, and it contained many signal transducer activity-associated genes. The role of cagPAI on cultured cells was also investigated using isogenic mutant cagE, which carries non-functional cagPAI. Then the upregulation of more than 80% of the induced genes (476/566) was found to depend on cagPAI. Signal transducer pathway through NF-κB or ERK are the major pathways which are known to be activated by cagPAI-positive H pylori. The role of these pathways in the whole signal activation by cagPAI-positive H pyloriwas analyzed. The specific inhibitors against NF-κB or ERK pathway blocked the activation of gene expression in 65% (367/566) or 76% (429/566) of the genes whose activation appealed to depend on cagPAI. CONCLUSION: These results suggest that more than half of the genes induced by cayPAI-positive H pylori depend on NF-κB and ERK signaling activation, and these pathways may play a role in the gene expression induced by hostbacterial interaction which may associate with H pylorirelated gastro-duodenal diseases.展开更多
BACKGROUND Psoriasis is a chronic autoimmune disease that usually manifests as a red scaly epidermis,induration,and hyperproliferation of basal keratinocytes.About 2%of the world’s population suffers from psoriasis b...BACKGROUND Psoriasis is a chronic autoimmune disease that usually manifests as a red scaly epidermis,induration,and hyperproliferation of basal keratinocytes.About 2%of the world’s population suffers from psoriasis but there are no clear therapeutics yet.Recently,mesenchymal stem cells(MSCs)have been regarded as a therapeutic alternative for autoimmune diseases,as they possess immunosuppressive effects without risks.Human umbilical cord-derived MSCs effectively regulate immune cells and are characterized by low immunogenicity,which has many advantages in treating immune diseases.CASE SUMMARY The patient was a 47-year-old male,diagnosed with psoriasis in 1995.He had received various treatments for 25 years,but the psoriatic condition was not significantly improved.He was given three rounds of minimally manipulated umbilical cord-derived MSCs over 2 wk.The erythema gradually disappeared.Three months after the 1st round,all erythema completely disappeared,and the psoriasis did not recur.CONCLUSION Minimally manipulated umbilical cord-derived MSC transplantation can potentially treat patients who suffer from psoriasis.展开更多
Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predomin...Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predominant infiltrated immune cells in a tumor,play a pivotal role in regulating the immunosuppressive tumor microenvironment.As a potential therapeutic strategy to counteract TAMs,here we explore an exosome-guided in situ direct reprogramming of tumor-supportive M2-polarized TAMs into tumor-attacking M1-type macrophages.Exosomes derived from M1-type macrophages(M1-Exo)promote a phenotypic switch from anti-inflammatory M2-like TAMs toward pro-inflammatory M1-type macrophages with high conversion efficiency.Reprogrammed M1 macrophages possessing protein-expression profiles similar to those of classically activated M1 macrophages display significantly increased phagocytic function and robust cross-presentation ability,potentiating antitumor immunity surrounding the tumor.Strikingly,these M1-Exo also lead to the conversion of human patient-derived TAMs into M1-like macrophages that highly express MHC class II,offering the clinical potential of autologous and allogeneic exosome-guided direct TAM reprogramming for arming macrophages to join the fight against cancer.展开更多
Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP1...Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP18-2),a PPIL1 homolog,plays an essential role in heat tolerance by regulating pre-mRNA splicing.Under heat stress conditions,AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta.We determined that AtCYP18-2 interacts with several spliceosome complex B^(ACT)components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress.The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type.Moreover,global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress–responsive genes under heat stress conditions,particularly intron retention(IR).The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type.Furthermore,the intron-containing transcripts of two heat stress-related genes,HEAT SHOCK PROTEIN 101(HSP101)and HEAT SHOCK FACTOR A2(HSFA2),produced functional proteins.HSP101-IR-GFP localization was responsive to heat stress,and HSFA2-Ⅲ-IR interacted with HSF1 and HSP90.1 in plant cells.Our findings reveal that CYP18-2 functions as a splicing factor within the B~(ACT)spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.展开更多
Fibroblast growth factor 23(FGF23)is an osteocyte-and osteoblast-derived hormone that primarily regulates phosphate and vitamin D metabolism.Circulatory FGF23 levels are abnormally increased in pathological conditions...Fibroblast growth factor 23(FGF23)is an osteocyte-and osteoblast-derived hormone that primarily regulates phosphate and vitamin D metabolism.Circulatory FGF23 levels are abnormally increased in pathological conditions like acute or chronic kidney injury,resulting in disease progression as well as increased rates of morbidity and mortality.^(1) However,FGF23 production in acute liver injury is not fully investigated.In this study.展开更多
Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation.However,in the aboveground organs of many species,somatic cells that are distal to the wound site become less sensi...Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation.However,in the aboveground organs of many species,somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation,suggesting the existence of repressive regulatory mechanisms that are largely unknown.Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions.We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants.The constitutive triple response 1-1(ctr1-1)mutation induced callus formation in explants without submergence,suggesting that ethylene facilitates cell dedifferentiation.We show that ETHYLENE-INSENSITIVE 2(EIN2)post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation.Submergence-induced calli in non-wounded regions were suitable for shoot regeneration,similar to those near the wound site.We also observed submergence-promoted callus formation in Chinese cabbage(Brassica rapa),indicating that this may be a conserved mechanism in other species.Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.展开更多
Glucocorticoids(GCs)is vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases(11β-HSDs)and20-hydroxysteroid dehydrogenase(20HSD...Glucocorticoids(GCs)is vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases(11β-HSDs)and20-hydroxysteroid dehydrogenase(20HSD).Here we sought to reveal the differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens.Eggs of fast-growing breed contained significantly higher(P【0.05)展开更多
Progressive aggregation of tau protein in neurons is associated with neurodegeneration in tauopathies.Cell non-autonomous disease mechanisms in astrocytes may be important drivers of the disease process but remain lar...Progressive aggregation of tau protein in neurons is associated with neurodegeneration in tauopathies.Cell non-autonomous disease mechanisms in astrocytes may be important drivers of the disease process but remain largely elusive.Here,we studied cell type-specific responses to intraneuronal tau aggregation prior to neurodegeneration.To this end,we developed a fully human co-culture model of seed-independent intraneuronal tau pathology,which shows no neuron and synapse loss.Using high-content microscopy,we show that intraneuronal tau aggregation induces oxidative stress accompanied by activation of the integrated stress response specifically in astrocytes.This requires the direct co-culture with neurons and is not related to neurodegeneration or extracellular tau levels.Tau-directed antisense therapy reduced intraneuronal tau levels and aggregation and prevented the cell non-autonomous responses in astrocytes.These data identify the astrocytic integrated stress response as a novel disease mechanism activated by intraneuronal tau aggregation.In addition,our data provide the first evidence for the efficacy of tau-directed antisense therapy to target cell autonomous and cell non-autonomous disease pathways in a fully human model of tau pathology.展开更多
基金supported by the Korea Research Institute of Bioscience and Biotechnology(KRIBB)Research Initiative Program(KGM4252331,KGM5382322),Republic of Korea.
文摘Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development.
文摘Britanin is a bioactive sesquiterpene lactone known for its potent anti-inflammatory and anti-oxidant properties.It also exhibits significant anti-tumor activity,suppressing tumor growth in vitro and in vivo.The current body of research on Britanin includes thirty papers predominantly related to neoplasms,the majority of which are gastrointestinal tumors that have not been summarized before.To drive academic debate,the present paper reviews the available research on Britanin in gastrointestinal tumors.It also outlines novel research directions using data not directly concerned with the digestive system,but which could be adopted in future gastrointestinal research.Britanin was found to counteract liver,colorectal,pancreatic,and gastric tumors,by regulating proliferation,apoptosis,autophagy,immune response,migration,and angiogenesis.As confirmed in pancreatic,gastric,and liver cancer,its most commonly noted molecular effects include nuclear factor kappa B and B-cell lymphoma 2 downregulation,as well as Bcl-2-associated X protein upregulation.Moreover,it has been found to induce the Akt kinase and Forkhead box O1 axis,activate the AMP-activated protein kinase pathway,elevate interleukin-2 and peroxisome proliferator-activated receptor-γlevels,reduce interleukin-10,as well as downregulate matrix metalloproteinase-9,Twist family bHLH transcription factor 1,and cyclooxygenase-2.It also inhibits Myc–HIF1αinteraction and programmed death ligand 1 transcription by interrupting the Ras/RAF/MEK/ERK pathway and mTOR/P70S6K/4EBP1 signaling.Future research should aim to unravel the link between Britanin and acetylcholinesterase,mast cells,osteolysis,and ischemia,as compelling data have been provided by studies outside the gastrointestinal context.Since the cytotoxicity of Britanin on noncancerous cells is significantly lower than that on tumor cells,while still being effective against the latter,further in-depth studies with the use of animal models are merited.The compound exhibits pleiotropic biological activity and offers considerable promise as an anti-cancer agent,which may address the current paucity of treatment options and high mortality rate among patients with gastrointestinal tumors.
文摘In accordance with the World Health Organization data,cancer remains at the forefront of fatal diseases.An upward trend in cancer incidence and mortality has been observed globally,emphasizing that efforts in developing detection and treatment methods should continue.The diagnostic path typically begins with learning the medical history of a patient;this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy.Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization.Thus,there is a need for novel cancer detection methods such as liquid biopsy,elastography,synthetic biosensors,fluorescence imaging,and reflectance confocal microscopy.Conventional therapeutic methods,although still common in clinical practice,pose many limitations and are unsatisfactory.Nowadays,there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy,exosome-based therapy,nanotechnology,dendritic cells,chimeric antigen receptors,immune checkpoint inhibitors,natural product-based therapy,tumor-treating fields,and photodynamic therapy.The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions.As evidenced,modern methods are not without drawbacks;there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity,specificity,safety,and efficacy.Nevertheless,an appropriate route has been taken,as confirmed by the approval of some modern methods by the Food and Drug Administration.
基金supported by the Ministry of EducationScience and Technology(No.2021M3A9A1096894)+1 种基金Republic of Korea and the KRIBB Research Initiative Program(KGM4252223)Korea Research Institute of Bioscience and Biotechnology,Republic of Korea。
文摘Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embryonic development.Therefore,we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.Results We cultured porcine in vitro-fertilized embryos in medium with AN(0,0.3,0.5,and 1 mg/mL)for 6 d.AN at 0.5 mg/mL significantly increased the blastocyst formation rate,trophectoderm cell number,and cellular survival rate compared to the control.AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control.Moreover,AN significantly improved the quantity of mitochondria and mitochondrial membrane potential,and increased the lipid droplet,fatty acid,and ATP levels.Interestingly,the levels of proteins and genes related to the sonic hedgehog(SHH)signaling pathway were significantly increased by AN.Conclusions These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos.
基金supported by ZonMW and Stichting Proefdiervrij (#114022506)PPP Allo wance made available by Health~Holland,Top Sector Life Sciences&Health,to stimulate public-private partnerships (#LSHM17014 and LSHM18024)+3 种基金Alzheimer Nederland (grant WE.03-2017-10)European Commission (Joint Programming Initiative Neurodegenerative Diseases/JPco-fuND (ZonMW#733051062)Weston Brain Institute (#NR1 60014)ZonMW Memorabel/Alzheimer Nederland (#733050101)(to WS)
文摘Maintenance of protein homeostasis or“proteostasis”is essential for the functioning and viability of cells.This is in particular the case for cells like neurons that cannot self-renew and acquire unique functional properties during their lifetime.Cellular proteostatic stress responses are in place to protect cells from damage in case of proteostatic challenges.The integrated stress response(ISR)is one of the key proteostatic stress responses in the cell(Costa-Mattioli and Walter,2020).The ISR is the downstream convergence point for the four stress-induced eIF2αkinases(EIF2AK1-4)that control stress-regulated protein translation via phosphorylation of the translation factor eIF2α.ISR activation results in a transient reduction of global translation while it concomitantly enhances the translation of specific mRNAs,including that encoding the activating transcription factor 4(ATF4).Together,the translational control mediated by the ISR results in a temporary reduction of the overall protein load and the selectively increased expression of proteins that contribute to restoration of the proteostatic balance.
基金Supported by The 21st century Frontier Program in the Functional Human Genome Project,No.HGM0200934the International Collaboration Program of Science and Technology,No. FGM0600914+1 种基金the Research Program for New Drug Target Discovery Grant from the Ministry of Education,Science & Technology,No.NBM3300711the KRIBB Research Initiative Program Grant,No.KGM3320911
文摘AIM:To investigate the role of hepatitis B virus X-protein(HBx)-induced reactive oxygen species(ROS)on liver carcinogenesis in HBx transgenic mice and HepG2-HBx cells.METHODS:Cell growth rate was analyzed,and through western blotting,mitogenic signaling was observed.Endogenous ROS from wild and HBx transgenic mice and HepG2-Mock and HBx cells were assayed by FACS-calibur.Identification of oxidized and reduced phosphatase and tensin homolog(PTEN)was analyzed through N-ethylmaleimide alkylation,nonreducing electrophoresis.RESULTS:We observed that the cell-proliferation-related phosphoinositide 3-kinase/Akt pathway is activated by HBx in vivo and in vitro.Increased ROS were detected by HBx.Tumor suppressor PTEN,via dephosphorylation of Akt,was oxidized and inactivated by increased ROS.Increased oxidized PTEN activated the mitogenic pathway through over-activated Akt.However,treatment with ROS scavenger N-acetyl cysteine can reverse PTEN to a reduced form.Endogenously produced ROS also stimulated HBx expression.CONCLUSION:HBx induced ROS promoted Akt pathways via oxidized inactive PTEN.HBx and ROS maintained a positive regulatory loop,which aggravated carcinogenesis.
基金Supported by Grants from the genomics program of the National Research Foundation of Korea funded by the Ministry of ScienceICT+4 种基金and Future PlanningNRF-2012M3A9D1054670 and NRF-2014M3C9A3068554(to Kim SY)Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of EducationNRF-2013R1A1A2006621(to Kim M)the Korea Research Institute of Bioscience and Biotechnology research initiative grant
文摘Gastric cancer is a complex disease that is affected by multiple genetic and environmental factors. For the precise diagnosis and effective treatment of gastric cancer, the heterogeneity of the disease must be simplified; one way to achieve this is by dividing the disease into subgroups. Toward this effort, recent advances in high-throughput sequencing technology have revealed four molecular subtypes of gastric cancer, which are classified as Epstein-Barr viruspositive, microsatellite instability, genomically stable, and chromosomal instability subtypes. We anticipate that this molecular subtyping will help to extend our knowledge for basic research purposes and will be valuable for clinical use. Here, we review the genomic and epigenomic heterogeneity of the four molecular subtypes of gastric cancer. We also describe a mutational meta-analysis and a reanalysis of DNA methylation that were performed using previously reported gastric cancer datasets.
文摘BACKGROUND Alopecia areata(AA)is a common autoimmune disease characterized by hair loss.AA appears in extensive forms,such as progressive and diffusing hair loss(diffuse AA),a total loss of scalp hair(alopecia totalis),and complete loss of hair over the entire body(alopecia universalis).Recently,mesenchymal stem cells(MSCs)have been identified as a therapeutic alternative for autoimmune diseases.For this reason,preclinical and case studies of AA and related diseases using MSCs have been conducted.CASE SUMMARY Case 1:A 55-year-old woman suffered from AA in two areas of the scalp.She was given 15 rounds of minimally manipulated umbilical cord-MSCs(MM-UC-MSCs)over 6 mo.The AA gradually improved 3 mo after the first round.The patient was cured,and AA did not recur.Case 2:A 30-year-old woman,with history of local steroid hormone injections,suffered from AA in one area on the scalp.She was given two rounds of MM-UC-MSCs over 1 mo.The AA immediately improved after the first round.The patient was cured,and AA did not recur.Case 3:A 20-year-old woman,who was diagnosed with alopecia universalis at the age of 12,was given 14 rounds of MM-UC-MSCs over 12 mo.Her hair began to grow about 3 mo after the first round.The patient was cured,and alopecia universalis did not recur.CONCLUSION MM-UC-MSC transplantation potentially treats patients who suffer from AA and related diseases.
基金supported by the National Nature Science Foundation of China (Project No. U0931004)the Sino-German Cooperation in Agriculture (Project No. 28/04-05CHN7 2010–2011)
文摘Background: Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0-14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results: One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P〈O.05) and thyroid hormone receptor o (TRo) (P〈O.05), and down-regulation of growth hormone receptor (GHR) (P〈O.01) and IGF-I (P〈O.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P〈O.05) and of TRa was lower (P〈O.01) than in IF cells, suggesting that RF restored the mRNA expression of TRa and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P〈O.05), indicating that RF reduced the pro-apoptotic influence of iF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P〈O.O01) or RF (P〈O.05) cells. Conclusions: These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.
文摘Literature data on glioblastoma ongoingly underline the link between metabolism and cancer stemness,the latter is one responsible for potentiating the resistance to treatment,inter alia due to increased invasiveness.In recent years,glioblastoma stemness research has bashfully introduced a key aspect of cytoskeletal rearrangements,whereas the impact of the cytoskeleton on invasiveness is well known.Although non-stem glioblastoma cells are less invasive than glioblastoma stem cells(GSCs),these cells also acquire stemness with greater ease if characterized as invasive cells and not tumor core cells.This suggests that glioblastoma stemness should be further investigated for any phenomena related to the cytoskeleton and metabolism,as they may provide new invasion-related insights.Previously,we proved that interplay between metabolism and cytoskeleton existed in glioblastoma.Despite searching for cytoskeleton-related processes in which the investigated genes might have been involved,not only did we stumble across the relation to metabolism but also reported genes that were found to be implicated in stemness.Thus,dedicated research on these genes in GSCs seems justifiable and might reveal novel directions and/or biomarkers that could be utilized in the future.Herein,we review the previously identified cytoskeleton/metabolism-related genes through the prism of glioblastoma stemness.
基金Supported by The 21st Century Frontier Program in the Functional Human Genome Project, No. HGM0200934the International Collaboration Program of Science and Technology, No. FGM0600914the Ministry of Education, Science and Technology, and the KRIBB Research Initiative Program Grant, No. KGM3320911, South Korea
文摘Long term hepatitis B virus (HBV) infection is a major risk factor in pathogenesis of chronic liver diseases,including hepatocellular carcinoma (HCC). The HBV encod-ed proteins,hepatitis B virus X protein and preS,appear to contribute importantly to the pathogenesis of HCC. Both are associated with oxidative stress,which can damage cellular molecules like lipids,proteins,and DNA during chronic infection. Chronic alcohol use is another important factor that contributes to oxidative stress in the liver. Previous studies reported that treatment with antioxidants,such as curcumin,silymarin,green tea,and vitamins C and E,can protect DNA from damage and regulate liver pathogenesis-related cascades by reducing reactive oxygen species. This review summarizes some of the relationships between oxidative stress and liver pathogenesis,focusing upon HBV and alcohol,and suggests antioxidant therapeutic approaches.
基金Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sport, and Culture of Japan
文摘AIM: To elucidate the sequential gene expression profile in AGS cells co-cultured with wild-type Helicobacter pylori (H pylon) as a model of Hpylori-infected gastric epithelium, and to further examine the contribution of cag-pathogenicity islands (cagPAI)-coding type IV secretion system and the two pathways, nuclear factor kappa B (NF-κB) and extracellular signal-regulated kinases (ERK) on wild-type Hpylori-induced gene expression. METHODS: Gene expression profiles induced by Hpylori were evaluated in AGS gastric epithelial cells using cDNA microarray, which were present in the 4600 independent clones picked up from the human gastric tissue. We also analyzed the contribution of NF-κB and ERK signaling on H pylori-induced gene expression by using inhibitors of specific signal pathways. The isogenic mutant with disrupted cagE (△cagE) was used to elucidate the role of cagPAI-encoding type IV secretion system in the gene expression profile. RESULTS: According to the expression profile, the genes were classified into four clusters. Among them, the clusters characterized by continuous upregulation were most conspicuous, and it contained many signal transducer activity-associated genes. The role of cagPAI on cultured cells was also investigated using isogenic mutant cagE, which carries non-functional cagPAI. Then the upregulation of more than 80% of the induced genes (476/566) was found to depend on cagPAI. Signal transducer pathway through NF-κB or ERK are the major pathways which are known to be activated by cagPAI-positive H pylori. The role of these pathways in the whole signal activation by cagPAI-positive H pyloriwas analyzed. The specific inhibitors against NF-κB or ERK pathway blocked the activation of gene expression in 65% (367/566) or 76% (429/566) of the genes whose activation appealed to depend on cagPAI. CONCLUSION: These results suggest that more than half of the genes induced by cayPAI-positive H pylori depend on NF-κB and ERK signaling activation, and these pathways may play a role in the gene expression induced by hostbacterial interaction which may associate with H pylorirelated gastro-duodenal diseases.
文摘BACKGROUND Psoriasis is a chronic autoimmune disease that usually manifests as a red scaly epidermis,induration,and hyperproliferation of basal keratinocytes.About 2%of the world’s population suffers from psoriasis but there are no clear therapeutics yet.Recently,mesenchymal stem cells(MSCs)have been regarded as a therapeutic alternative for autoimmune diseases,as they possess immunosuppressive effects without risks.Human umbilical cord-derived MSCs effectively regulate immune cells and are characterized by low immunogenicity,which has many advantages in treating immune diseases.CASE SUMMARY The patient was a 47-year-old male,diagnosed with psoriasis in 1995.He had received various treatments for 25 years,but the psoriatic condition was not significantly improved.He was given three rounds of minimally manipulated umbilical cord-derived MSCs over 2 wk.The erythema gradually disappeared.Three months after the 1st round,all erythema completely disappeared,and the psoriasis did not recur.CONCLUSION Minimally manipulated umbilical cord-derived MSC transplantation can potentially treat patients who suffer from psoriasis.
基金This work was supported by the Samsung Research Funding&Incubation Center of Samsung Electronics(SRFC-MA1901-10)and the Intramural Research Program of KIST.
文摘Highly immunosuppressive tumor microenvironment containing various protumoral immune cells accelerates malignant transformation and treatment resistance.In particular,tumor-associated macrophages(TAMs),as the predominant infiltrated immune cells in a tumor,play a pivotal role in regulating the immunosuppressive tumor microenvironment.As a potential therapeutic strategy to counteract TAMs,here we explore an exosome-guided in situ direct reprogramming of tumor-supportive M2-polarized TAMs into tumor-attacking M1-type macrophages.Exosomes derived from M1-type macrophages(M1-Exo)promote a phenotypic switch from anti-inflammatory M2-like TAMs toward pro-inflammatory M1-type macrophages with high conversion efficiency.Reprogrammed M1 macrophages possessing protein-expression profiles similar to those of classically activated M1 macrophages display significantly increased phagocytic function and robust cross-presentation ability,potentiating antitumor immunity surrounding the tumor.Strikingly,these M1-Exo also lead to the conversion of human patient-derived TAMs into M1-like macrophages that highly express MHC class II,offering the clinical potential of autologous and allogeneic exosome-guided direct TAM reprogramming for arming macrophages to join the fight against cancer.
基金funded by the New Breeding Technology program(no,PJ01686202)the National Research Foundation of Korea(NRF+2 种基金No.2022R1A2B5B02002008)Research Initiative Programs of the Korea Research Institute of Bioscience and Biotechnology(KRIBBNo.5372322)grants to H.C.
文摘Peptidyl-prolyl isomerase-like 1(PPIL1)is associated with the human spliceosome complex.However,its function in pre-mRNA splicing remains unclear.In this study,we show that Arabidopsis thaliana CYCLOPHILIN 18-2(AtCYP18-2),a PPIL1 homolog,plays an essential role in heat tolerance by regulating pre-mRNA splicing.Under heat stress conditions,AtCYP18-2 expression was upregulated in mature plants and GFP-tagged AtCYP18-2 redistributed to nuclear and cytoplasmic puncta.We determined that AtCYP18-2 interacts with several spliceosome complex B^(ACT)components in nuclear puncta and is primarily associated with the small nuclear RNAs U5 and U6 in response to heat stress.The AtCYP18-2 loss-of-function allele cyp18-2 engineered by CRISPR/Cas9-mediated gene editing exhibited a hypersensitive phenotype to heat stress relative to the wild type.Moreover,global transcriptome profiling showed that the cyp18-2 mutation affects alternative splicing of heat stress–responsive genes under heat stress conditions,particularly intron retention(IR).The abundance of most intron-containing transcripts of a subset of genes essential for thermotolerance decreased in cyp18-2 compared to the wild type.Furthermore,the intron-containing transcripts of two heat stress-related genes,HEAT SHOCK PROTEIN 101(HSP101)and HEAT SHOCK FACTOR A2(HSFA2),produced functional proteins.HSP101-IR-GFP localization was responsive to heat stress,and HSFA2-Ⅲ-IR interacted with HSF1 and HSP90.1 in plant cells.Our findings reveal that CYP18-2 functions as a splicing factor within the B~(ACT)spliceosome complex and is crucial for ensuring the production of adequate levels of alternatively spliced transcripts to enhance thermotolerance.
基金supported by the National Research Foundation(NRF)basic science research program Korean government(Ministry of Science and ICT),Republic of Korea(No.2020R1A6A3A01096145,2020)(No.NRF-2019R1C1C1005319,2019)(No.NRF-2017R1A6A3A04006167,2017)(No.NRF-2020R1A2C3006952,2020)and(No.NRF-2021R1A2C3004923,2021)The Federal Ministry of Education and Research-Liver Systems Medicine Program of the Stiftung für Biomedizinische Alkoholforschung,Germany(No.PTJ-031L0043).
文摘Fibroblast growth factor 23(FGF23)is an osteocyte-and osteoblast-derived hormone that primarily regulates phosphate and vitamin D metabolism.Circulatory FGF23 levels are abnormally increased in pathological conditions like acute or chronic kidney injury,resulting in disease progression as well as increased rates of morbidity and mortality.^(1) However,FGF23 production in acute liver injury is not fully investigated.In this study.
基金This work was supported by the Basic Research Program provided by the National Research Foundation of Korea(NRF-2019R1C1C1002045 and NRF-2021R1A2C4002413)the New Breeding Technologies Development Program(project PJ0165302022)provided by the Rural Development Administration of Korea,and the KRIBB Research Initiative Program(KGM5372221).
文摘Plant cells in damaged tissue can be reprogrammed to acquire pluripotency and induce callus formation.However,in the aboveground organs of many species,somatic cells that are distal to the wound site become less sensitive to auxin-induced callus formation,suggesting the existence of repressive regulatory mechanisms that are largely unknown.Here we reveal that submergence-induced ethylene signals promote callus formation by releasing post-transcriptional silencing of auxin receptor transcripts in non-wounded regions.We determined that short-term submergence of intact seedlings induces auxin-mediated cell dedifferentiation across the entirety of Arabidopsis thaliana explants.The constitutive triple response 1-1(ctr1-1)mutation induced callus formation in explants without submergence,suggesting that ethylene facilitates cell dedifferentiation.We show that ETHYLENE-INSENSITIVE 2(EIN2)post-transcriptionally regulates the abundance of transcripts for auxin receptor genes by facilitating microRNA393 degradation.Submergence-induced calli in non-wounded regions were suitable for shoot regeneration,similar to those near the wound site.We also observed submergence-promoted callus formation in Chinese cabbage(Brassica rapa),indicating that this may be a conserved mechanism in other species.Our study identifies previously unknown regulatory mechanisms by which ethylene promotes cell dedifferentiation and provides a new approach for boosting callus induction efficiency in shoot explants.
文摘Glucocorticoids(GCs)is vital for embryonic development and their bioactivity is regulated by the intracellular metabolism involving 11β-hydroxysteroid dehydrogenases(11β-HSDs)and20-hydroxysteroid dehydrogenase(20HSD).Here we sought to reveal the differences in egg deposition of corticosterone and embryonic expression of corticosterone metabolic enzymes between slow and fast growing broiler chickens.Eggs of fast-growing breed contained significantly higher(P【0.05)
基金supported by ZonMW and Stichting Proefdiervrij(MKMD#114022506 to W.S.)co-funded by the PPP Allowance made available by Health~Holland,Top Sector Life Sciences&Health,to stimulate public-private partnerships(#LSHM17014 to V.M.H.and LSHM18024 to W.S.).
文摘Progressive aggregation of tau protein in neurons is associated with neurodegeneration in tauopathies.Cell non-autonomous disease mechanisms in astrocytes may be important drivers of the disease process but remain largely elusive.Here,we studied cell type-specific responses to intraneuronal tau aggregation prior to neurodegeneration.To this end,we developed a fully human co-culture model of seed-independent intraneuronal tau pathology,which shows no neuron and synapse loss.Using high-content microscopy,we show that intraneuronal tau aggregation induces oxidative stress accompanied by activation of the integrated stress response specifically in astrocytes.This requires the direct co-culture with neurons and is not related to neurodegeneration or extracellular tau levels.Tau-directed antisense therapy reduced intraneuronal tau levels and aggregation and prevented the cell non-autonomous responses in astrocytes.These data identify the astrocytic integrated stress response as a novel disease mechanism activated by intraneuronal tau aggregation.In addition,our data provide the first evidence for the efficacy of tau-directed antisense therapy to target cell autonomous and cell non-autonomous disease pathways in a fully human model of tau pathology.