The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural par...The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.展开更多
Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceou...Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceous roots are influenced remain unknown.To better understand the behavior of roots in tension under different conditions and to illustrate these behaviors,uniaxial tensile tests were conducted on the Poa araratica roots as the gauge length increased from 20 mm to 80 mm.Subsequently,ANOVA was used to test the impact of the significant influences of gauge length on the biomechanical properties,nonlinear regression was applied to establish the variation in the biomechanical properties with gauge length to answer the question of the extent to which the biomechanical properties are influenced,and Weibull models were subsequently introduced to illustrate how the biomechanical properties are influenced by gauge length.The results reveal that(1)the variation in biomechanical properties with root diameter depends on both the gauge length and the properties themselves;(2)the gauge length significantly impacts most of the biomechanical properties;(3)the tensile resistance,tensile strength,and tensile strain at cracks decrease as the gauge length increases,with values decreasing by 20%-300%,while Young’s modulus exhibits the opposite trend,with a corresponding increase of 30%;and(4)the Weibull distribution is suitable for describing the probability distribution of these biomechanical properties;the Weibull modulus for both tensile resistance and tensile strain at cracks linearly decrease with gauge length,whereas those for tensile strength and Young’s modulus exhibit the opposite trend.The tensile resistance,tensile strength,and tensile strain at the cracks linearly decrease with increasing gauge length,while the tensile strength and Young’s modulus linearly increase with increasing gauge length.展开更多
Accurate cropland information is critical for agricultural planning and production,especially in foodstressed countries like China.Although widely used medium-to-high-resolution satellite-based cropland maps have been...Accurate cropland information is critical for agricultural planning and production,especially in foodstressed countries like China.Although widely used medium-to-high-resolution satellite-based cropland maps have been developed from various remotely sensed data sources over the past few decades,considerable discrepancies exist among these products both in total area and in spatial distribution of croplands,impeding further applications of these datasets.The factors influencing their inconsistency are also unknown.In this study,we evaluated the consistency and accuracy of six cropland maps widely used in China in circa 2020,including three state-of-the-art 10-m products(i.e.,Google Dynamic World,ESRI Land Cover,and ESA WorldCover)and three 30-m ones(i.e.,GLC_FCS30,GlobeLand 30,and CLCD).We also investigated the effects of landscape fragmentation,climate,and agricultural management.Validation using a ground-truth sample revealed that the 10-m-resolution WorldCover provided the highest accuracy(92.3%).These maps collectively overestimated Chinese cropland area by up to 56%.Up to 37%of the land showed spatial inconsistency among the maps,concentrated mainly in mountainous regions and attributed to the varying accuracy of cropland maps,cropland fragmentation and management practices such as irrigation.Our work shed light on the promotion of future cropland mapping efforts,especially in highly inconsistent regions.展开更多
Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the...Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cove...Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cover and the associated drivers. The conventional regression model can only analyze the correlation between land use types and driving factors but cannot depict the spatial autocorrelation characteristics. Land uses in Yongding County, which is located in the typical karst mountain areas in northwestern Hunan province, were investigated by means of modeling the spatial autocorrelation of land use types with the purpose of deriving better spatial land use patterns on the basis of terrain characteristics and infrastructural conditions. Through incorporating components describing the spatial autocorrelation into a conventional logistic model, we constructed a regression model (Autologistic model), and used this model to simulate and analyze the spatial land use patterns in Yongding County. According to the comparison with the conventional logistic model without considering the spatial autocorrelation, this model showed better goodness and higher accuracy of fitting. The distribution of arable land, wood land, built-up land and unused land yielded areas under the ROC curves (AUC) was improved to 0.893, 0.940, 0.907 and 0.863 respectively with the autologistic model. It is argued that the improved model based on autologistic method was reasonable to a certain extent. Meanwhile, these analysis results could provide valuable information for modeling future land use change scenarios with actual conditions of local and regional land use, and the probability maps of land use types obtained from this study could also support government decision-making on land use management for Yongding County and other similar areas.展开更多
The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd ...The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd Surface Satellite(GLASS) DSR datasets have been generated recently using multiple satellite data in China.This study investigates the performances of direct comparison approach,which is mostly used for validation of surface insolation retrieved from satellite data over the plain area,and indirect comparison approach,which needs a fine resolution map of DSR as reference,for validation of GLASS DSR product in time-steps of 1 and 3 hours over three Chinese Ecosystem Research Network sites located in the rugged surface.Results suggest that it probably has a large uncertainty to assess GLASS DSR product using the direct comparison method between GLASS surface insolation and field measurements over complex terrain,especially at Mt.Gongga 3,000 m station with root mean square error of 279.04 and 229.06 W/m2in time-steps of 1 and 3 hours,respectively.Further improvement for validation of GLASS DSR product in the rugged surface is suggested by generation of a fine resolution map of surface insolation and comparison of the aggregated fine resolution map with GLASS product in the rugged surface.The validation experience demonstrates that the GLASS DSR algorithm is satisfactory with determination coefficient of 0.83 and root mean square error of 81.91W/m2over three Chinese Ecosystem Research Network sites,although GLASS product overestimates DSR compared to the aggregated fine resolution map of surface insolation.展开更多
Remote sensing provides key inputs to a wide range of models and methods developed for quantifying forest carbon.In particular,carbon inventory methods recommended by IPCC require biomass data and a suite of forest di...Remote sensing provides key inputs to a wide range of models and methods developed for quantifying forest carbon.In particular,carbon inventory methods recommended by IPCC require biomass data and a suite of forest disturbance products.Significant progress has been made in deriving these products by leveraging publicly available remote sensing assets,including observations acquired by the legendary Landsat mission and new systems launched within the past decade,including Sentinel-2,Sentinel-1,GEDI,and ICESAT-2.With the L-band NISAR and P-band BIOMASS missions to be launched in 2023,the Earth’s land surfaces will be imaged by optical and multi-band(including C-,L-,and P-bands)radar systems that can provide global,sub-weekly observations at sub-hectare spatial resolutions for public use.Fine scale products derived from these observations will be crucial for developing monitoring,reporting,and verification(MRV)capabilities needed to support carbon trade,REDD+,and other market-driven tools aimed at achieving climate mitigation goals through forest management at all levels.Following a brief discussion of the roles of forests in the global carbon cycle and the wide range of models and methods available for evaluating forest carbon dynamics,this paper provides an overview of recent progress and forthcoming opportunities in using remote sensing to map forest structure and biomass,detect forest disturbances,determine disturbance attribution,quantify disturbance intensity,and estimate harvested timber volume.Advances in these research areas require large quantities of well—distributed reference data to calibrate remote sensing algorithms and to validate the derived products.In addition,two of the forest carbon pools-dead organic matter and soil carbon—are difficult to monitor using modern remote sensing capabilities.Carefully designed inventory programs are needed to collect the required reference data as well as the data needed to estimate dead organic matter and soil carbon.展开更多
Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,f...Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.展开更多
Forest losses or gains have long been recognized as critical processes modulating the carbon flux between the biosphere and the atmosphere. Timely, accurate and spatially explicit information on forest disturbance and...Forest losses or gains have long been recognized as critical processes modulating the carbon flux between the biosphere and the atmosphere. Timely, accurate and spatially explicit information on forest disturbance and recovery history is required for assessing the effectiveness of existing forest management. The major objectives of our research focused on testing the mapping efficacy of the vegetation change tracker (VCT) model over a forested area in China. We used a new version of VCT algorithm built upon the Landsat time series stacks (LTSS). The LTSS consisted of yearly image acquisitions to map forest disturbance history from 1987 to 2011 over the Ning-Zhen Mountains, Jiangsu Province of east China. The LTSS consisted of TM and ETM+ scenes with different projec- tions due to distinct data sources (Beijing remote sensing ground station and the USGS EROS Center). The valida- tion results of the disturbance year maps showed that most spatial agreement measures ranged from 70 to 86 %, comparable with the VCT accuracies reported for many places in USA. Very low accuracies were identified in 1995 (38.3 %) and 1992 (56.2 %) in the current analysis. These resulted from the insensitivity of the VCT algorithm to detect low intensity disturbances and also from the mis- registration errors of the image pairs. Major forest distur- bance types existing in our study area were identified as agricultural expansion (39.8 %), urbanization (24.9 %), forest management practice (19.3 %), and mining (12.8 %). In general, there was a gradual decreasing trend in forest cover throughout this region, caused principally by China's economic, demographic, environmental and political policies and decisions, as well as some weather events. While VCT has largely been used to assess long term changes and trends in the USA, it has great potential for assessing landscape level change elsewhere throughout the world.展开更多
Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioe...Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioess-paleosol sequence at the Guchuanzhen site (GCZ). These palaeoflood SWDs were studied by field observations and laboratory analyses including concentrations of chemical elements and optically stimulated luminescence (OSL) dating. The results showed that the palaeoflood SWDs were the result of the secondary separations of the surface soil and weathered soil layers during the process of water transport and deposition, and without obvious weathering during soil development. These extraordinary flood events were dated back to 3,200-3,000 a B.P. with the OSL method and checked by archaeological dating of the human remains retrieved from the profile. These extraordinary flood events were therefore considered as regional expression of known climatic events and demonstrated the climatic instability in the Holocene. This result is important for understanding the effects of global climate change on the dynamics of river systems.展开更多
The main objective of this paper was to evaluate the daily actual evapotranspiration (ET) accuracy obtained by remote sensing algorithms when compared with Bowen ratio measurements performed in the cotton fields. The ...The main objective of this paper was to evaluate the daily actual evapotranspiration (ET) accuracy obtained by remote sensing algorithms when compared with Bowen ratio measurements performed in the cotton fields. The experiment was conducted in a cotton experimental field of EMBRAPA located in Ceará State, Brazil. Seven TM Landsat-5 images acquired in 2005 and 2008 were used to perform SEBAL and SSEB algorithms. The comparison between the estimated values by remoting sensing algorithms and the measured values in situ showed an acceptable accuracy. Besides, SSEB algorithm showed to be an important tool for ET analysis in the semi-arid regions, due to the fact that it does not need the meteorological data to solve the energy balance, but only the average temperature of the “hot” and “cold” pixels. Additionally, SSEB presents simpler processing than SEBAL algorithm that needs to solve an iterative process to obtain the sensible heat flux values.展开更多
In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. T...In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers.Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of highaltitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the highaltitude regions of the neighbouring Asian countries.展开更多
Currently, there is limited literature dealing with the length of stay of circular migrants in urban areas (LSCMU), although many studies have discussed the phenomenon of migration and the determinants of migration....Currently, there is limited literature dealing with the length of stay of circular migrants in urban areas (LSCMU), although many studies have discussed the phenomenon of migration and the determinants of migration. This study attempts to fill that gap using survey data from the mountainous areas of Chongqing, Southwest China. From a comparative perspective, this study divided workers into two groups (a young group aged between 16 and 35 years and an old group aged between 36 and 65 years). The average LSCMU values for the young and old groups were 225 days and ~74 days, respectively. Two multi-regression models were used to estimate the determinants of LSCMU in the two groups. The results showed that LSCMU was closely related to individual factors in both groups, including gender, age and job training. Family and community factors, including household size, arable land per capita and the distance from market, had much weaker effects on the dependent variable, especially in the older group. It was noticeable that job training had significant positive effects on LSCMU in both groups; these findings have special implications for the urbanization process in China.展开更多
The Relationship between sex ratio at age 0 to 4 and altitude in China is quantitatively investigated by using Geographical Information System(GIS)technology in this paper.The results show that the counties with high ...The Relationship between sex ratio at age 0 to 4 and altitude in China is quantitatively investigated by using Geographical Information System(GIS)technology in this paper.The results show that the counties with high sex ratio at age 0 to 4 in 1990 and 2000 are mainly distributed on the east of the well-known Chinese population division,Anhui-Tengchong line,and there is high negative correlation between sex ratio at age 0 to 4 and altitude in Chinese counties. There are highest sex ratio at age 0 to 4 in the regions under 100 meters,but this ratio over 3200 meters falls into the normal range.And the sex ratio at age 0 to 4 continues to fall down when the altitude rises. So the geographical environment evidently affects the sex ratio at birth.There is higher sex ratio at birth in lower-altitude regions.The effect with altitude may be associated with the ambient tempeture.展开更多
The objective of this work is to study the diurnal evolution of the radiative impact of atmospheric aerosols in an urban city located in the West African Sahel and the correlations with the main influencing factors of...The objective of this work is to study the diurnal evolution of the radiative impact of atmospheric aerosols in an urban city located in the West African Sahel and the correlations with the main influencing factors of local climate dynamics. The simulation was performed using a treatment chain including the GAME code. In the methodology, the atmosphere is modeled by 33 plane parallel layers and the effects of absorption, multiple scattering by particles and gas are taken account. An hour-by-hour calculation of radiative forcing at the top of the atmosphere, in the atmospheric layer and at the earth’s surface was performed. The data used as input are the monthly averages of optical properties, radiosonde measurements, daily synoptic measurements and surface albedo. The results show a parabolic diurnal course of a negative radiative impact at the top of the atmosphere with an extremum at 12 o'clock. Maximum cooling is observed shortly after sunrise and shortly after sunset. The largest annual deviations are noted between the months of March and December with respective maximum cooling values of -34 W/m<sup>2</sup> and -15.60 W/m<sup>2</sup>. On the earth’s surface, a cooling impact is observed with two diurnal peaks at sunrise and sunset, the greatest difference between the diurnal maximums is noted between March (-104.45 W/m<sup>2</sup>) and August (-54 W/m<sup>2</sup>). In the atmospheric layer, there is almost constant diurnal warming between 9 a.m. and 4 p.m. The maximum difference between the diurnal extremes is also noted between March (about 85 W/m<sup>2</sup>) and August (35 W/m<sup>2</sup>). Likewise, the study of the diurnal warming of the first atmospheric layer showed the extreme values in March (5.6°C) and August (2.4°C), these maximum values being always observed at around 12 o’clock. An analysis of similar works carried out in urban cities in various locations of the world has shown a relatively good accordance with the values obtained. This study highlights the radiative impact of Saharan desert dust, the effect of the local climate and the succession between dry season (November to May) and the rainy one (July to October), as well as the zenith solar angle and human activity.展开更多
This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most ...This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most of the large Sahelian urban cities which are under the same climatic influences and whose populations present similarities in their socio-economic aspects. Using the GAME code, the radiative forcing was calculated at the top of the atmosphere, in the atmospheric layer and at the earth’s surface. The results showed overall a cooling effect at the top of the atmosphere due to the backscattering in space of the incident radiation, a heating in the atmospheric layer due to the absorption effect and a surface cooling justified by the attenuation of radiation crossing the atmosphere. Using monthly average values of optical properties, vertical temperature and humidity profiles, daily temperatures and surface albedo, the simulation yielded forcing values ranging from -6.77 W/m<sup>2</sup> to -2.56 W/m<sup>2</sup> at the top of the atmosphere, from 15.8 W/m<sup>2</sup> to 34.7 W/m<sup>2</sup> in the atmospheric layer and from -41.00 W/m<sup>2</sup> to -21.68 W/m<sup>2</sup> at the earth’s surface. In addition, the warming was simulated in the first atmospheric layer (in contact with the surface), and the results show values ranging from 0.8<span style="white-space:nowrap;">°</span>C to 1.8<span style="white-space:nowrap;">°</span>C. The study of the annual variability of the results showed a strong correlation between the radiative forcing and the seasonal succession characteristic of the climate in West Africa with the extreme values in the month of March (characteristic of the dry and hot season) and in the month of August (characteristic of the rainy season).展开更多
Concerns for biodiversity loss, wildlife conservation, and habitat destruction have dominated the policy agenda worldwide for decades. Unsustainable human-induced development and negative interaction between humans an...Concerns for biodiversity loss, wildlife conservation, and habitat destruction have dominated the policy agenda worldwide for decades. Unsustainable human-induced development and negative interaction between humans and wildlife have emerged as predominant issues globally. The present study deals with human and elephant conflicts (HEC) in the Polpitigama Divisional Secretariat, Sri Lanka, which is located in the Kahalla-Pallekele elephant corridor and connects Wilpattu and Kaudulla wildlife sanctuaries. The research objectives are identifying spatial patterns of elephant habitat suitability and probable risk zones for HEC. The elephant habitat suitability and HEC risk zones were identified on spatial and temporal scales using Geographic Information System integrating Multi-Criteria Decision Analysis. Different factors, including habitat suitability, distance to roads, distance to croplands, distance to forests and protected areas, settlements, and population density, were considered to determine HEC risk zones in the area. Topography, water, and vegetation criteria are considered when determining elephant habitat suitability. The results of the Analytic Hierarchy Process run the spatially explicit model. The results revealed that of the total area, 15.3% is very highly suitable for elephant habitats, while the least suitable areas contribute only 4%. About 33.8% of the area is moderately suitable for elephants. The risk map indicates that 23.7% of the total area is under very high risk for HEC, and the least risk areas only account for 5.4%. About 26.2% of the area falls under the moderate risk zone for HEC. Since the model considered three aspects of HEC, it will help policymakers in wildlife conservation to avoid and minimize the HEC.展开更多
Exploring the impact of climate factors on vegetation phenology is crucial to understanding climate–vegetation interactions as well as carbon and water cycles in ecosystems in the context of climate change.In this ar...Exploring the impact of climate factors on vegetation phenology is crucial to understanding climate–vegetation interactions as well as carbon and water cycles in ecosystems in the context of climate change.In this article,we extracted the vegetation phenology data from 2002 to 2021 based on the dynamic threshold method in the source region of the Yangtze and Yellow Rivers.Trend and correlation analyses were used to investigate the relationship between vegetation phenology and temperature,precipitation and their spatial evolution characteristics.The results showed that:(i)From 2002 to 2021,the multi-year average start of growing season(SOS),end of growing season(EOS)and length of growing season(LOS)for plants were concentrated in May,October and 4–6 months,with a trend of 4.9 days(earlier),1.5 days(later),6.3 days/10 a(longer),respectively.(ii)For every 100 m increase in elevation,SOS,EOS and LOS were correspondingly delayed by 1.8 days,advanced by 0.8 days and shortened by 2.6 days,respectively.(iii)The impacts of temperature and precipitation on vegetation phenology varied at different stages of vegetation growth.Influencing factors of spring phenology experienced a shift from temperature to precipitation,while autumn phenology experienced precipitation followed by temperature.(iv)The climate factors in the previous period significantly affected the vegetation phenology in the study area and the spatial variability was obvious.Specifically,the temperature in April significantly affected the spring phenology and precipitation in August widely affected the autumn phenology.展开更多
China stands as one of the leading producers of waste electrical and electronic equipment(WEEE),facing significant challenges in managing the substantial volumes generated.Despite existing regulations,the informal tre...China stands as one of the leading producers of waste electrical and electronic equipment(WEEE),facing significant challenges in managing the substantial volumes generated.Despite existing regulations,the informal treatment of WEEE persists in some areas due to inadequate recycling networks at the city level.Consequently,there is a critical need for a detailed geographical mapping of WEEE generation to address improper disposal practices effectively.This study introduces the cMAC–EEEs(city Material Cycles and Manufactured Capital–EEEs)database,providing estimates of WEEE generation across approximately 300 prefecture-level cities from 1978 to 2017.It focuses on five commonly used types of electrical and electronic equipment(refrigerators,air conditioners,washing machines,computers,TVs)originating from three key sources(urban residents,rural residents,enterprises).The findings reveal(1)significant spatial variation in WEEE generation within China,with eastern and central city clusters identified as hotspots,particularly for urban residents and enterprises,while the western region exhibits the highest growth rate in WEEE generation,notably among rural residents.(2)The growth in obsolete computers and air conditioners is prominent,especially in rural areas and among enterprises,whereas the generation of obsolete TVs,washing machines,and refrigerators is leveling off and expected to decrease in some urban areas.(3)Enterprises account for a substantial portion of WEEE generation,though uncertainties exist,necessitating further refinement.The study highlights that less developed regions lack adequate recycling facilities,with specific limitations in refrigerators and air conditioners recycling capabilities.To enhance WEEE management,it advocates for increased interregional collaboration and capacity building in less developed areas.Additionally,the regulation of WEEE from private enterprises requires improvement.At the product level,a greater focus on recycling practices for refrigerators and air conditioners is recommended.展开更多
文摘The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.
基金financially supported by the Key R&D Program of Shaanxi Province(2023-YBSF-324)Shaanxi Provincial Department of Education Services Local Special Plan Project(23JC019)National Natural Science of Foundation of China(42267024).
文摘Gauge length influences the biomechanical properties of herbaceous roots such as tensile resistance,tensile strength and Young’s modulus.However,the extent to which and how these biomechanical properties of herbaceous roots are influenced remain unknown.To better understand the behavior of roots in tension under different conditions and to illustrate these behaviors,uniaxial tensile tests were conducted on the Poa araratica roots as the gauge length increased from 20 mm to 80 mm.Subsequently,ANOVA was used to test the impact of the significant influences of gauge length on the biomechanical properties,nonlinear regression was applied to establish the variation in the biomechanical properties with gauge length to answer the question of the extent to which the biomechanical properties are influenced,and Weibull models were subsequently introduced to illustrate how the biomechanical properties are influenced by gauge length.The results reveal that(1)the variation in biomechanical properties with root diameter depends on both the gauge length and the properties themselves;(2)the gauge length significantly impacts most of the biomechanical properties;(3)the tensile resistance,tensile strength,and tensile strain at cracks decrease as the gauge length increases,with values decreasing by 20%-300%,while Young’s modulus exhibits the opposite trend,with a corresponding increase of 30%;and(4)the Weibull distribution is suitable for describing the probability distribution of these biomechanical properties;the Weibull modulus for both tensile resistance and tensile strain at cracks linearly decrease with gauge length,whereas those for tensile strength and Young’s modulus exhibit the opposite trend.The tensile resistance,tensile strength,and tensile strain at the cracks linearly decrease with increasing gauge length,while the tensile strength and Young’s modulus linearly increase with increasing gauge length.
基金This work was supported by the National Natural Science Foundation of China(72221002,42271375)the Strategic Priority Research Program(XDA28060100)the Informatization Plan Project(CAS-WX2021PY-0109)of the Chinese Academy of Sciences.
文摘Accurate cropland information is critical for agricultural planning and production,especially in foodstressed countries like China.Although widely used medium-to-high-resolution satellite-based cropland maps have been developed from various remotely sensed data sources over the past few decades,considerable discrepancies exist among these products both in total area and in spatial distribution of croplands,impeding further applications of these datasets.The factors influencing their inconsistency are also unknown.In this study,we evaluated the consistency and accuracy of six cropland maps widely used in China in circa 2020,including three state-of-the-art 10-m products(i.e.,Google Dynamic World,ESRI Land Cover,and ESA WorldCover)and three 30-m ones(i.e.,GLC_FCS30,GlobeLand 30,and CLCD).We also investigated the effects of landscape fragmentation,climate,and agricultural management.Validation using a ground-truth sample revealed that the 10-m-resolution WorldCover provided the highest accuracy(92.3%).These maps collectively overestimated Chinese cropland area by up to 56%.Up to 37%of the land showed spatial inconsistency among the maps,concentrated mainly in mountainous regions and attributed to the varying accuracy of cropland maps,cropland fragmentation and management practices such as irrigation.Our work shed light on the promotion of future cropland mapping efforts,especially in highly inconsistent regions.
文摘Urban geography has always been concerned about the influence of human settlements on urban vitality,but few studies reveal the influence of human settlements on urban vitality at a micro-scale.This paper analyzes the spatial distribution characteristics of human settlements’quality and urban vitality at the micro-scale using Geodetectors and geographic weighted regression to analyze the relationship between human settlements and urban vitality.The results are shown as follows:there is still a significant development space for human settlements quality in Shahekou District,with obvious spatial dependence characteristics and significant gaps between various systems;the urban vitality of Shahekou District has obvious timeliness,and the urban vitality undergoes significant changes over time,which is related to the human settlements quality.The spatial distribution presents a single core spatial distribution structure with strong relative stability.The spatial distribution of cold and hot spots shows a pattern of“high in the north and low in the south,high in the east and low in the west”,with an increasing trend from southwest to northeast;the reachability of public transport has a significant impact on urban vitality.Its synergy with other variables is the leading force forming the spatial distribution of urban vitality.The environmental system,support system and social system are the significant factors affecting the urban vitality of Shahekou District.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
基金National High Technology Research and Development Program of China, No.2008AA12Z106 National Natural Science Foundation of China, No.40801166 No.40771198
文摘Nowadays, spatial simulation on land use patterns is one of the key contents of LUCC. Modeling is an important tool for simulating land use patterns due to its ability to integrate measurements of changes in land cover and the associated drivers. The conventional regression model can only analyze the correlation between land use types and driving factors but cannot depict the spatial autocorrelation characteristics. Land uses in Yongding County, which is located in the typical karst mountain areas in northwestern Hunan province, were investigated by means of modeling the spatial autocorrelation of land use types with the purpose of deriving better spatial land use patterns on the basis of terrain characteristics and infrastructural conditions. Through incorporating components describing the spatial autocorrelation into a conventional logistic model, we constructed a regression model (Autologistic model), and used this model to simulate and analyze the spatial land use patterns in Yongding County. According to the comparison with the conventional logistic model without considering the spatial autocorrelation, this model showed better goodness and higher accuracy of fitting. The distribution of arable land, wood land, built-up land and unused land yielded areas under the ROC curves (AUC) was improved to 0.893, 0.940, 0.907 and 0.863 respectively with the autologistic model. It is argued that the improved model based on autologistic method was reasonable to a certain extent. Meanwhile, these analysis results could provide valuable information for modeling future land use change scenarios with actual conditions of local and regional land use, and the probability maps of land use types obtained from this study could also support government decision-making on land use management for Yongding County and other similar areas.
基金supported jointly by the "Hundred Talents" Projects of Chinese Academy of Sciences (CAS) and Sichuan ProvinceStrategic Priority Research Program-Climate Change: Carbon Budget and Related Issues (Grant No. XDA05050105)+2 种基金International Cooperation Partner Program of Innovative Team, CAS (Grant No. KZZD-EW-TZ-06)Open Foundation of BNU Center for Global Change Data Processing and AnalysisYoung Foundation of Institute of Mountain Hazards and Environment, CAS
文摘The downward shortwave radiation(DSR) is an essential parameter of land surface radiation budget and many land surface models that characterize hydrological,ecological and biogeochemical processes.The new Global LAnd Surface Satellite(GLASS) DSR datasets have been generated recently using multiple satellite data in China.This study investigates the performances of direct comparison approach,which is mostly used for validation of surface insolation retrieved from satellite data over the plain area,and indirect comparison approach,which needs a fine resolution map of DSR as reference,for validation of GLASS DSR product in time-steps of 1 and 3 hours over three Chinese Ecosystem Research Network sites located in the rugged surface.Results suggest that it probably has a large uncertainty to assess GLASS DSR product using the direct comparison method between GLASS surface insolation and field measurements over complex terrain,especially at Mt.Gongga 3,000 m station with root mean square error of 279.04 and 229.06 W/m2in time-steps of 1 and 3 hours,respectively.Further improvement for validation of GLASS DSR product in the rugged surface is suggested by generation of a fine resolution map of surface insolation and comparison of the aggregated fine resolution map with GLASS product in the rugged surface.The validation experience demonstrates that the GLASS DSR algorithm is satisfactory with determination coefficient of 0.83 and root mean square error of 81.91W/m2over three Chinese Ecosystem Research Network sites,although GLASS product overestimates DSR compared to the aggregated fine resolution map of surface insolation.
基金funded by NASA’s Carbon Cycle Science and Land Cover and Land Use Change Programs,the Laboratory of Environmental Model and Data Optima(EMDO),and PIESAT-Australiasupport was provided by the Department of Geographical Sciences of the University of Maryland and the Central PublicInterest Scientific Institution Basic Research Fund(CAFYBB2018GB01)。
文摘Remote sensing provides key inputs to a wide range of models and methods developed for quantifying forest carbon.In particular,carbon inventory methods recommended by IPCC require biomass data and a suite of forest disturbance products.Significant progress has been made in deriving these products by leveraging publicly available remote sensing assets,including observations acquired by the legendary Landsat mission and new systems launched within the past decade,including Sentinel-2,Sentinel-1,GEDI,and ICESAT-2.With the L-band NISAR and P-band BIOMASS missions to be launched in 2023,the Earth’s land surfaces will be imaged by optical and multi-band(including C-,L-,and P-bands)radar systems that can provide global,sub-weekly observations at sub-hectare spatial resolutions for public use.Fine scale products derived from these observations will be crucial for developing monitoring,reporting,and verification(MRV)capabilities needed to support carbon trade,REDD+,and other market-driven tools aimed at achieving climate mitigation goals through forest management at all levels.Following a brief discussion of the roles of forests in the global carbon cycle and the wide range of models and methods available for evaluating forest carbon dynamics,this paper provides an overview of recent progress and forthcoming opportunities in using remote sensing to map forest structure and biomass,detect forest disturbances,determine disturbance attribution,quantify disturbance intensity,and estimate harvested timber volume.Advances in these research areas require large quantities of well—distributed reference data to calibrate remote sensing algorithms and to validate the derived products.In addition,two of the forest carbon pools-dead organic matter and soil carbon—are difficult to monitor using modern remote sensing capabilities.Carefully designed inventory programs are needed to collect the required reference data as well as the data needed to estimate dead organic matter and soil carbon.
基金supported by National Natural Science Foundation of China(Grant No.41901382)Open Fund of State Key Laboratory of Remote Sensing Science(Grant No.OFSLRSS201917)the HZAU research startup fund(No.11041810340,No.11041810341).
文摘Background:Accurate mapping of tree species is highly desired in the management and research of plantation forests,whose ecosystem services are currently under threats.Time-series multispectral satellite images,e.g.,from Landsat-8(L8)and Sentinel-2(S2),have been proven useful in mapping general forest types,yet we do not know quantitatively how their spectral features(e.g.,red-edge)and temporal frequency of data acquisitions(e.g.,16-day vs.5-day)contribute to plantation forest mapping to the species level.Moreover,it is unclear to what extent the fusion of L8 and S2 will result in improvements in tree species mapping of northern plantation forests in China.Methods:We designed three sets of classification experiments(i.e.,single-date,multi-date,and spectral-temporal)to evaluate the performances of L8 and S2 data for mapping keystone timber tree species in northern China.We first used seven pairs of L8 and S2 images to evaluate the performances of L8 and S2 key spectral features for separating these tree species across key growing stages.Then we extracted the spectral-temporal features from all available images of different temporal frequency of data acquisition(i.e.,L8 time series,S2 time series,and fusion of L8 and S2)to assess the contribution of image temporal frequency on the accuracy of tree species mapping in the study area.Results:1)S2 outperformed L8 images in all classification experiments,with or without the red edge bands(0.4%–3.4%and 0.2%–4.4%higher for overall accuracy and macro-F1,respectively);2)NDTI(the ratio of SWIR1 minus SWIR2 to SWIR1 plus SWIR2)and Tasseled Cap coefficients were most important features in all the classifications,and for time-series experiments,the spectral-temporal features of red band-related vegetation indices were most useful;3)increasing the temporal frequency of data acquisition can improve overall accuracy of tree species mapping for up to 3.2%(from 90.1%using single-date imagery to 93.3%using S2 time-series),yet similar overall accuracies were achieved using S2 time-series(93.3%)and the fusion of S2 and L8(93.2%).Conclusions:This study quantifies the contributions of L8 and S2 spectral and temporal features in mapping keystone tree species of northern plantation forests in China and suggests that for mapping tree species in China's northern plantation forests,the effects of increasing the temporal frequency of data acquisition could saturate quickly after using only two images from key phenological stages.
基金funded by the following grants:the Forestry Public Welfare Project(201304208)the‘‘948’’Project sponsored by the State Forestry Administration(SFA)of China(2014-4-25)+4 种基金the National Natural Science Foundation of China(31270587,31100414)the PAPD(Priority Academic Program Development)of Jiangsu provincial universitiesperformed while the lead author held a scholarship sponsored the CSC(China Scholarship Council)(201208320553)at the department of Geographical Sciences,University of Marylandawardee of the 2012 Youth Backbone Teachers Support Plan of Jiangsu Provincethe 2012 Youth Talents Support Plan of Nanjing Forestry University
文摘Forest losses or gains have long been recognized as critical processes modulating the carbon flux between the biosphere and the atmosphere. Timely, accurate and spatially explicit information on forest disturbance and recovery history is required for assessing the effectiveness of existing forest management. The major objectives of our research focused on testing the mapping efficacy of the vegetation change tracker (VCT) model over a forested area in China. We used a new version of VCT algorithm built upon the Landsat time series stacks (LTSS). The LTSS consisted of yearly image acquisitions to map forest disturbance history from 1987 to 2011 over the Ning-Zhen Mountains, Jiangsu Province of east China. The LTSS consisted of TM and ETM+ scenes with different projec- tions due to distinct data sources (Beijing remote sensing ground station and the USGS EROS Center). The valida- tion results of the disturbance year maps showed that most spatial agreement measures ranged from 70 to 86 %, comparable with the VCT accuracies reported for many places in USA. Very low accuracies were identified in 1995 (38.3 %) and 1992 (56.2 %) in the current analysis. These resulted from the insensitivity of the VCT algorithm to detect low intensity disturbances and also from the mis- registration errors of the image pairs. Major forest distur- bance types existing in our study area were identified as agricultural expansion (39.8 %), urbanization (24.9 %), forest management practice (19.3 %), and mining (12.8 %). In general, there was a gradual decreasing trend in forest cover throughout this region, caused principally by China's economic, demographic, environmental and political policies and decisions, as well as some weather events. While VCT has largely been used to assess long term changes and trends in the USA, it has great potential for assessing landscape level change elsewhere throughout the world.
基金funded by the National Natural Science Foundation of China(41030637)the Science and Technology Project of Baoji City(14SFGG-2)+1 种基金the Fundamental Research Funds for Key Subject Physical Geography of Baoji University of Arts and ScienceShaanxi Province and the Key Library Program of Education Department of Shaanxi Province(15JS008)
文摘Palaeohydmlogical investigations were carried out in the Guchuan Basin in the upper reaches of the Weihe River valley, China. A set of palaeoflood slackwater deposits (SWDs) was found interbedded in the Holocene Ioess-paleosol sequence at the Guchuanzhen site (GCZ). These palaeoflood SWDs were studied by field observations and laboratory analyses including concentrations of chemical elements and optically stimulated luminescence (OSL) dating. The results showed that the palaeoflood SWDs were the result of the secondary separations of the surface soil and weathered soil layers during the process of water transport and deposition, and without obvious weathering during soil development. These extraordinary flood events were dated back to 3,200-3,000 a B.P. with the OSL method and checked by archaeological dating of the human remains retrieved from the profile. These extraordinary flood events were therefore considered as regional expression of known climatic events and demonstrated the climatic instability in the Holocene. This result is important for understanding the effects of global climate change on the dynamics of river systems.
文摘The main objective of this paper was to evaluate the daily actual evapotranspiration (ET) accuracy obtained by remote sensing algorithms when compared with Bowen ratio measurements performed in the cotton fields. The experiment was conducted in a cotton experimental field of EMBRAPA located in Ceará State, Brazil. Seven TM Landsat-5 images acquired in 2005 and 2008 were used to perform SEBAL and SSEB algorithms. The comparison between the estimated values by remoting sensing algorithms and the measured values in situ showed an acceptable accuracy. Besides, SSEB algorithm showed to be an important tool for ET analysis in the semi-arid regions, due to the fact that it does not need the meteorological data to solve the energy balance, but only the average temperature of the “hot” and “cold” pixels. Additionally, SSEB presents simpler processing than SEBAL algorithm that needs to solve an iterative process to obtain the sensible heat flux values.
文摘In the alpine regions of Hindu Kush,Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat,important for the livelihood of the local communities,and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers.Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of highaltitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the highaltitude regions of the neighbouring Asian countries.
基金supported by the Natural Science Foundation of China(Grant Nos.41161140352 and 41271119)the National Basic Research Program of China(Grant No.2015CB452705)
文摘Currently, there is limited literature dealing with the length of stay of circular migrants in urban areas (LSCMU), although many studies have discussed the phenomenon of migration and the determinants of migration. This study attempts to fill that gap using survey data from the mountainous areas of Chongqing, Southwest China. From a comparative perspective, this study divided workers into two groups (a young group aged between 16 and 35 years and an old group aged between 36 and 65 years). The average LSCMU values for the young and old groups were 225 days and ~74 days, respectively. Two multi-regression models were used to estimate the determinants of LSCMU in the two groups. The results showed that LSCMU was closely related to individual factors in both groups, including gender, age and job training. Family and community factors, including household size, arable land per capita and the distance from market, had much weaker effects on the dependent variable, especially in the older group. It was noticeable that job training had significant positive effects on LSCMU in both groups; these findings have special implications for the urbanization process in China.
文摘The Relationship between sex ratio at age 0 to 4 and altitude in China is quantitatively investigated by using Geographical Information System(GIS)technology in this paper.The results show that the counties with high sex ratio at age 0 to 4 in 1990 and 2000 are mainly distributed on the east of the well-known Chinese population division,Anhui-Tengchong line,and there is high negative correlation between sex ratio at age 0 to 4 and altitude in Chinese counties. There are highest sex ratio at age 0 to 4 in the regions under 100 meters,but this ratio over 3200 meters falls into the normal range.And the sex ratio at age 0 to 4 continues to fall down when the altitude rises. So the geographical environment evidently affects the sex ratio at birth.There is higher sex ratio at birth in lower-altitude regions.The effect with altitude may be associated with the ambient tempeture.
文摘The objective of this work is to study the diurnal evolution of the radiative impact of atmospheric aerosols in an urban city located in the West African Sahel and the correlations with the main influencing factors of local climate dynamics. The simulation was performed using a treatment chain including the GAME code. In the methodology, the atmosphere is modeled by 33 plane parallel layers and the effects of absorption, multiple scattering by particles and gas are taken account. An hour-by-hour calculation of radiative forcing at the top of the atmosphere, in the atmospheric layer and at the earth’s surface was performed. The data used as input are the monthly averages of optical properties, radiosonde measurements, daily synoptic measurements and surface albedo. The results show a parabolic diurnal course of a negative radiative impact at the top of the atmosphere with an extremum at 12 o'clock. Maximum cooling is observed shortly after sunrise and shortly after sunset. The largest annual deviations are noted between the months of March and December with respective maximum cooling values of -34 W/m<sup>2</sup> and -15.60 W/m<sup>2</sup>. On the earth’s surface, a cooling impact is observed with two diurnal peaks at sunrise and sunset, the greatest difference between the diurnal maximums is noted between March (-104.45 W/m<sup>2</sup>) and August (-54 W/m<sup>2</sup>). In the atmospheric layer, there is almost constant diurnal warming between 9 a.m. and 4 p.m. The maximum difference between the diurnal extremes is also noted between March (about 85 W/m<sup>2</sup>) and August (35 W/m<sup>2</sup>). Likewise, the study of the diurnal warming of the first atmospheric layer showed the extreme values in March (5.6°C) and August (2.4°C), these maximum values being always observed at around 12 o’clock. An analysis of similar works carried out in urban cities in various locations of the world has shown a relatively good accordance with the values obtained. This study highlights the radiative impact of Saharan desert dust, the effect of the local climate and the succession between dry season (November to May) and the rainy one (July to October), as well as the zenith solar angle and human activity.
文摘This paper is an assessment of radiative forcing caused by atmospheric aerosols in an urban city in West Africa. It is carried out in Ouagadougou in Burkina Faso and is an illustration of the radiative impact in most of the large Sahelian urban cities which are under the same climatic influences and whose populations present similarities in their socio-economic aspects. Using the GAME code, the radiative forcing was calculated at the top of the atmosphere, in the atmospheric layer and at the earth’s surface. The results showed overall a cooling effect at the top of the atmosphere due to the backscattering in space of the incident radiation, a heating in the atmospheric layer due to the absorption effect and a surface cooling justified by the attenuation of radiation crossing the atmosphere. Using monthly average values of optical properties, vertical temperature and humidity profiles, daily temperatures and surface albedo, the simulation yielded forcing values ranging from -6.77 W/m<sup>2</sup> to -2.56 W/m<sup>2</sup> at the top of the atmosphere, from 15.8 W/m<sup>2</sup> to 34.7 W/m<sup>2</sup> in the atmospheric layer and from -41.00 W/m<sup>2</sup> to -21.68 W/m<sup>2</sup> at the earth’s surface. In addition, the warming was simulated in the first atmospheric layer (in contact with the surface), and the results show values ranging from 0.8<span style="white-space:nowrap;">°</span>C to 1.8<span style="white-space:nowrap;">°</span>C. The study of the annual variability of the results showed a strong correlation between the radiative forcing and the seasonal succession characteristic of the climate in West Africa with the extreme values in the month of March (characteristic of the dry and hot season) and in the month of August (characteristic of the rainy season).
文摘Concerns for biodiversity loss, wildlife conservation, and habitat destruction have dominated the policy agenda worldwide for decades. Unsustainable human-induced development and negative interaction between humans and wildlife have emerged as predominant issues globally. The present study deals with human and elephant conflicts (HEC) in the Polpitigama Divisional Secretariat, Sri Lanka, which is located in the Kahalla-Pallekele elephant corridor and connects Wilpattu and Kaudulla wildlife sanctuaries. The research objectives are identifying spatial patterns of elephant habitat suitability and probable risk zones for HEC. The elephant habitat suitability and HEC risk zones were identified on spatial and temporal scales using Geographic Information System integrating Multi-Criteria Decision Analysis. Different factors, including habitat suitability, distance to roads, distance to croplands, distance to forests and protected areas, settlements, and population density, were considered to determine HEC risk zones in the area. Topography, water, and vegetation criteria are considered when determining elephant habitat suitability. The results of the Analytic Hierarchy Process run the spatially explicit model. The results revealed that of the total area, 15.3% is very highly suitable for elephant habitats, while the least suitable areas contribute only 4%. About 33.8% of the area is moderately suitable for elephants. The risk map indicates that 23.7% of the total area is under very high risk for HEC, and the least risk areas only account for 5.4%. About 26.2% of the area falls under the moderate risk zone for HEC. Since the model considered three aspects of HEC, it will help policymakers in wildlife conservation to avoid and minimize the HEC.
基金supported by the National Key Research and Development Project(2022YFC3201704)the National Natural Science Foundation of China(52079008,52009006,52109038)+2 种基金the Research Fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(2023-SYSJJ-10)the Natural Science Foundation of Hubei Province(2022CFB554,2022CFD037)National Public Research Institutes for Basic R&D Operating Expenses Special Project(CKSF2023311/SZ).
文摘Exploring the impact of climate factors on vegetation phenology is crucial to understanding climate–vegetation interactions as well as carbon and water cycles in ecosystems in the context of climate change.In this article,we extracted the vegetation phenology data from 2002 to 2021 based on the dynamic threshold method in the source region of the Yangtze and Yellow Rivers.Trend and correlation analyses were used to investigate the relationship between vegetation phenology and temperature,precipitation and their spatial evolution characteristics.The results showed that:(i)From 2002 to 2021,the multi-year average start of growing season(SOS),end of growing season(EOS)and length of growing season(LOS)for plants were concentrated in May,October and 4–6 months,with a trend of 4.9 days(earlier),1.5 days(later),6.3 days/10 a(longer),respectively.(ii)For every 100 m increase in elevation,SOS,EOS and LOS were correspondingly delayed by 1.8 days,advanced by 0.8 days and shortened by 2.6 days,respectively.(iii)The impacts of temperature and precipitation on vegetation phenology varied at different stages of vegetation growth.Influencing factors of spring phenology experienced a shift from temperature to precipitation,while autumn phenology experienced precipitation followed by temperature.(iv)The climate factors in the previous period significantly affected the vegetation phenology in the study area and the spatial variability was obvious.Specifically,the temperature in April significantly affected the spring phenology and precipitation in August widely affected the autumn phenology.
基金supported by the Strategic Pilot Science and Technology Projects of Chinese Academy of Sciences(XDA23030304)the National Natural Science Foundation of China(Grant Nos.52200214,71961147003,and 52070178)+1 种基金Key Program of Frontier Science of the Chinese Academy of Sciences(QYZDB-SSW-DQC012)the China Scholarship Council(Grant No.201904910422).
文摘China stands as one of the leading producers of waste electrical and electronic equipment(WEEE),facing significant challenges in managing the substantial volumes generated.Despite existing regulations,the informal treatment of WEEE persists in some areas due to inadequate recycling networks at the city level.Consequently,there is a critical need for a detailed geographical mapping of WEEE generation to address improper disposal practices effectively.This study introduces the cMAC–EEEs(city Material Cycles and Manufactured Capital–EEEs)database,providing estimates of WEEE generation across approximately 300 prefecture-level cities from 1978 to 2017.It focuses on five commonly used types of electrical and electronic equipment(refrigerators,air conditioners,washing machines,computers,TVs)originating from three key sources(urban residents,rural residents,enterprises).The findings reveal(1)significant spatial variation in WEEE generation within China,with eastern and central city clusters identified as hotspots,particularly for urban residents and enterprises,while the western region exhibits the highest growth rate in WEEE generation,notably among rural residents.(2)The growth in obsolete computers and air conditioners is prominent,especially in rural areas and among enterprises,whereas the generation of obsolete TVs,washing machines,and refrigerators is leveling off and expected to decrease in some urban areas.(3)Enterprises account for a substantial portion of WEEE generation,though uncertainties exist,necessitating further refinement.The study highlights that less developed regions lack adequate recycling facilities,with specific limitations in refrigerators and air conditioners recycling capabilities.To enhance WEEE management,it advocates for increased interregional collaboration and capacity building in less developed areas.Additionally,the regulation of WEEE from private enterprises requires improvement.At the product level,a greater focus on recycling practices for refrigerators and air conditioners is recommended.