期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于空间仿真的仙居县森林碳分布估算 被引量:7
1
作者 张茂震 王广兴 +1 位作者 葛宏立 徐丽华 《林业科学》 EI CAS CSCD 北大核心 2014年第11期13-22,共10页
以浙江省仙居县为研究区,基于2008年森林资源二类调查样地(清查样地)数据和LandsatTM影像,用序列高斯协同仿真方法模拟全县森林碳储量及其分布。在此基础上,用总体估计值一致性(OEC)、仿真变动系数均值(ACV)和相对均方根误差(... 以浙江省仙居县为研究区,基于2008年森林资源二类调查样地(清查样地)数据和LandsatTM影像,用序列高斯协同仿真方法模拟全县森林碳储量及其分布。在此基础上,用总体估计值一致性(OEC)、仿真变动系数均值(ACV)和相对均方根误差(RRMSE)指标分析仿真精度;用设置于清查样地周围的临时样地(验证样地)数据与LandsatTM数据进行森林碳序列高斯块协同仿真,分析清查样地的空间代表性和森林碳分布空间仿真的尺度上推方法。结果表明:仙居县2008年森林总碳储量仿真估计值为2667878Mg,大部分分布在南部和北部山区,中部东西向条带状低海拔区域分布较少;区域碳密度仿真估计值为0~65.66Mg·hm^-2,无论是全部样地还是减少一半样地,仿真结果总体均值均在抽样估计置信区间以内;基于清查样地与基于加密的验证样地森林碳仿真结果表明30m×30m水平样地位置碳密度相关系数达0.95,以清查样地为中心1km×1km块的碳密度相关系数为0.85,说明1km×1km样地仍具有较好的代表性,块仿真效果满意;以(1-RRMSE)/n定义成本效益,则使用一半样地得到的成本效益优于使用全部样地的结果,用此指标有望找到满足给定精度的最经济的样地数量。 展开更多
关键词 森林碳制图 空间协同仿真 LANDSAT TM 精度评估 尺度上推
下载PDF
A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems 被引量:35
2
作者 Dengsheng Lu Qi Chen +3 位作者 Guangxing Wang Lijuan Liu Guiying Li Emilio Moran 《International Journal of Digital Earth》 SCIE EI CSCD 2016年第1期63-105,共43页
Remote sensing-based methods of aboveground biomass(AGB)estimation in forest ecosystems have gained increased attention,and substantial research has been conducted in the past three decades.This paper provides a surve... Remote sensing-based methods of aboveground biomass(AGB)estimation in forest ecosystems have gained increased attention,and substantial research has been conducted in the past three decades.This paper provides a survey of current biomass estimation methods using remote sensing data and discusses four critical issues–collection of field-based biomass reference data,extraction and selection of suitable variables from remote sensing data,identification of proper algorithms to develop biomass estimation models,and uncertainty analysis to refine the estimation procedure.Additionally,we discuss the impacts of scales on biomass estimation performance and describe a general biomass estimation procedure.Although optical sensor and radar data have been primary sources for AGB estimation,data saturation is an important factor resulting in estimation uncertainty.LIght Detection and Ranging(lidar)can remove data saturation,but limited availability of lidar data prevents its extensive application.This literature survey has indicated the limitations of using single-sensor data for biomass estimation and the importance of integrating multi-sensor/scale remote sensing data to produce accurate estimates over large areas.More research is needed to extract a vertical vegetation structure(e.g.canopy height)from interferometry synthetic aperture radar(InSAR)or optical stereo images to incorporate it into horizontal structures(e.g.canopy cover)in biomass estimation modeling. 展开更多
关键词 aboveground biomass forest ecosystems parametric vs.nonparametric algorithms remote sensing UNCERTAINTY
原文传递
A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management 被引量:1
3
作者 Zhe Zhang Hao Hu +5 位作者 Dandong Yin Shakil Kashem Ruopu Li Heng Cai Dylan Perkins Shaowen Wang 《International Journal of Digital Earth》 SCIE EI 2019年第11期1364-1381,共18页
With the increased frequency of natural hazards and disasters and consequent losses,it is imperative to develop efficient and timely strategies for emergency response and relief operations.In this paper,we propose a c... With the increased frequency of natural hazards and disasters and consequent losses,it is imperative to develop efficient and timely strategies for emergency response and relief operations.In this paper,we propose a cyberGIS-enabled multi-criteria spatial decision support system for supporting rapid decision making during emergency management.It combines a high-performance computing environment(cyberGIS-Jupyter)and multi-criteria decision analysis models(Weighted Sum Model(WSM)and Technique for Order Preference by Similarity to Ideal Solution Model(TOPSIS))with various types of social vulnerability indicators to solve decision problems that contain conflicting evaluation criteria in a flood emergency situation.Social media data(e.g.Twitter data)was used as an additional tool to support the decision-making process.Our case study involves two decision goals generated based on a past flood event in the city of Austin,Texas,U.S.A.As our result shows,WSM produces more diverse values and higher output category estimations than the TOPSIS model.Finally,the model was validated using an innovative questionnaire.This cyberGIS-enabled spatial decision support system allows collaborative problem solving and efficient knowledge transformation between decision makers,where different emergency responders can formulate their decision objectives,select relevant evaluation criteria,and perform interactive weighting and sensitivity analyses. 展开更多
关键词 Multi-criteria spatial decision support systems social media data(Twitter) disaster management big data and cyberGIS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部