Using allelochemicals to suppress cyanobacteria growth is a prospective method for its high efficiency and ecological safety.However,the suppression efficiency is affected inevitably by the extracellular polymeric sub...Using allelochemicals to suppress cyanobacteria growth is a prospective method for its high efficiency and ecological safety.However,the suppression efficiency is affected inevitably by the extracellular polymeric substances(EPS)produced by cyanobacteria,and the knowledge about the roles of EPS in resistance to allelochemical stress is scarce.For the study,two typical anti-cyanobacterial allelochemicals were adopted to investigate the role of EPS in resistance to allelochemical stress on Microcystis aeruginosa.Results show that EPS was crucial in alleviating the toxicity of allelochemicals to algae,especially in stabilizing the metabolism and photosynthetic activity of algal cells.The aggregation rate of algal cells increased with the increase of EPS secretion,which alleviated the stress of allelopathy.Tryptophan proteins and humic acids in EPS provided a binding site for allelochemicals,and the EPS-allelochemicals complex were formed by chemical bonding.This study improved our comprehension of the role of EPS in algal inhibition by allelochemicals.展开更多
Colloidal particles,heterogeneous mixture with various organic components and continuous molecular weight(MW)distribution,is omnipresent in lake sediments and substantially influence the retention,transportation,and f...Colloidal particles,heterogeneous mixture with various organic components and continuous molecular weight(MW)distribution,is omnipresent in lake sediments and substantially influence the retention,transportation,and fate of contaminants in lake ecosystem.We sampled and extracted sedimentary colloids from different ecology regions in Taihu Lake,Jiangsu,East China,in June 2020,and they were further separated into four different particle size ranges by tangent ultrafiltration,and the properties of colloids were studied in various methods,including zeta potential analysis,transmission electron micrograph images(TEM),Fourier transformation infrared(FTIR),and 3D fluorescence.Results show that the surface of the colloids is covered with organic macromolecular substances,such as humuslike substances and protein-like substances.There were significant differences in molecular weight and fraction content of colloids in the sediments from macrophyte-dominant(MD)area and algae-dominant(AD)area in the lake.Colloids from MD area are mainly composed of humic acid,protein,and fulvic acid;the content of fulvic acid is lower than that of humic acid and protein.The humic acid exists mainly in small molecular weight(10-100 kDa),protein exists in mainly large molecular weight colloids(0.45-1μm).Colloids from AD area are mainly composed of humic acid,and mainly distributed in the molecular weight(10 kDa-0.45μm).The presence of humic acid inhibits effectively the agglomeration of the colloids.Especially,the stability of colloids is closely related to the molecular weight,with low molecular weight from MD area show higher stability.The existence of humic acid in colloids increases the electrostatic repulsion between colloidal particles,which can effectively inhibit the agglomeration of colloids,thus enhancing the stability of colloids.Furthermore,both monovalent and divalent electrolytes enhance colloidal aggregation,and the low-molecular-weight(LMW)colloid fraction exhibits higher stability efficiency than the high-molecular-weight(HMW)colloidal.展开更多
Interconnected components of water cycle, including surface water, groundwater, and precipitation, can exhibit complex hydrologic dynamics. This study investigates dynamics embedded in surface water, groundwater, and ...Interconnected components of water cycle, including surface water, groundwater, and precipitation, can exhibit complex hydrologic dynamics. This study investigates dynamics embedded in surface water, groundwater, and precipitation time series data in the Lake Tuscaloosa watershed located in northern Alabama, using standard statistics and non-stationarity analysis. Standard statistics analysis shows that less water is available in this watershed over time. A significant correlation between different data sets is found, and groundwater is found to be slower evolving than its nearby surface systems. Non-stationarity analysis based on time scale-local Hurst exponents calculated by the multifractal detrended fluctuation approach shows that, on one hand, the stream system exhibits non-stationarity properties similar to precipitation, as expected. On the other hand, groundwater and lake stage non-stationarity is found to be influenced by the seasonal variation in rainfall and the long-term anthropogenic factors. Therefore, sustainability of surface water and aquifer may be affected by natural input and/or anthropogenic activity, both of which can evolve non-stationary in different time scales.展开更多
Quantitative description of turbulence using simple physical/mathematical models remains a challenge in classical physics and hydrologic dynamics. This study monitored the turbulence velocity field at the surface and ...Quantitative description of turbulence using simple physical/mathematical models remains a challenge in classical physics and hydrologic dynamics. This study monitored the turbulence velocity field at the surface and bottom of Taihu Lake, in China, a large shallow lake with a heterogeneous complex system, and conducted a statistical analysis of the data for the local turbulent structure. Results show that the measured turbulent flows with finite Reynolds numbers exhibit properties of non-Gaussian distribution. Compared with the normal distribution, the Levy distribution with meaningful parameters can better characterize the tailing behavior of the measured turbulence. Exit-distance statistics and multiscaling extended self-similarity(ESS) were used to interpret turbulence dynamics with different scale structures. Results show that the probability density function of the reverse structure distance and the multiscaling ESS can effectively capture the turbulent flow dynamics varying with water depth. These results provide an approach for quantitatively analyzing multiscale turbulence in large natural lakes.展开更多
Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge tradi...Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.展开更多
Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source ...Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.展开更多
Annually, coal-fired electric power plants produce large volumes of potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fill...Annually, coal-fired electric power plants produce large volumes of potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples collected from coal-fired power plants in the southeastern United States. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leaching data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is controlled by the diffusional process responsible for transferring these elements from interior to the surface of the particles as well as the dissolution of the fly ash particles. Therefore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.展开更多
The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absen...The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.展开更多
Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland...Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland river basin located in arid northwest China,a series of groundwater flow models have been developed for those purposes over the past 20 years.These models have elucidated the characteristics of groundwater flow systems and provided the scientific basis for a more sustainable management of groundwater resources and ecosystem services.The first part of this paper presents an overview of previous groundwater modeling studies and key lessons learned based on seven different groundwater models in the middle and lower HRB at sub-basin scales.The second part reviews the rationale for development of a regional basin-scale groundwater flow model that unifies previous sub-basin models.In addition,this paper discusses the opportunities and challenges in developing a regional groundwater flow model in an arid river basin such as the HRB.展开更多
Laboratory experiments are designed in this paper using single fractures made of cement and coarse sand for a series of hydraulic tests under the conditions of different fracture apertures, and for the simulation of t...Laboratory experiments are designed in this paper using single fractures made of cement and coarse sand for a series of hydraulic tests under the conditions of different fracture apertures, and for the simulation of the evolution of the flow pattern at places far from the outlet. The relationship between the hydraulic gradient and the flow velocity at different points, and the proportion evolution of the linear and nonlinear portions in the Forchheimer formula are then discussed. Three major conclusions are obtained. First, the non-Darcian flow exists in a single fracture in different laboratory tests. Better fitting accuracy is obtained by using the Forchheimer formula than by using the Darcy law. Second, the proportion of the Darcy flow increases with the increase of the observation scale. In places far enough, the Darcy flow prevails, and the critical velocity between the non-Darcian flow and the Darcy flow decreases as the fracture aperture increases. Third, when the fracture aperture increases, the critical Reynolds number between the non-Darcian flow and the Darcy flow decreases.展开更多
A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series ...A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series of images are recorded at known time intervals, then the spatial distribution is estimated using a calibration curve, linking the gray pixel value to the solute concentration. Using a multi-dimensional concentration distribution map extraction technique the longitudinal and transverse concentration distributions could be observed with the physical model. The image-processed concentrations are then compared directly with the measured concentrations sampled at the outlet end. The tracer breakthrough curves sampled at multiple points along the central line of the medium are also compared with the solutions from the standard advection–dispersion equation model. It is shown that the non-invasive image processing method may be used to map the spatiotemporal evolution of a solute's concentration without disturbing the flow or the transport dynamics, although the measured solute breakthrough curves feature some non-Fickian dynamics that cannot be efficiently captured by the standard transport model.展开更多
Natural aquifers usually exhibit complex physical and chemical heterogeneities,which are key factors complicating kinetic processes,such as contaminant transport and transformation,posing a great challenge in the reme...Natural aquifers usually exhibit complex physical and chemical heterogeneities,which are key factors complicating kinetic processes,such as contaminant transport and transformation,posing a great challenge in the remediation of contaminated groundwater.Aquifer heterogeneity usually leads to a distinct feature,the so-called“anomalous transport”in groundwater,which deviates from the phenomenon described by the classical advection-dispersion equation(ADE)based on Fick’s Law.Anomalous transport,also known as non-Fickian dispersion or“anomalous dispersion”in a broad sense,can explain the hydrogeological mechanism that leads to the temporally continuous deterioration of water quality and rapid spatial expansion of pollutant plumes.Contaminants enter and then are retained in the low-permeability matrix from the high-permeability zone via molecular diffusion,chemical adsorption,and other mass exchange effects.This process can be reversed when the concentration of pollutants in high-permeability zones is relatively low.The contaminants slowly return to the high-permeability zones through reverse molecular diffusion,resulting in sub-dispersive anomalous transport leading to the chronic gradual deterioration of water quality.Meanwhile,some contaminants are rapidly transported along the interconnected preferential flow paths,resulting in super-dispersive anomalous transport,which leads to the rapid spread of contaminants.Aquifer heterogeneity is also an important factor that constrains the efficacy of groundwater remediation,while the development,application,and evaluation of groundwater remediation technologies are usually based on the Fickian dispersion process predicted by the ADE equation.Comprehensive studies of the impacts of non-Fickian dispersion on contaminant transport and remediation are still needed.This article reviews the non-Fickian dispersion phenomenon caused by the heterogeneity of geological media,summarizes the processes and current understanding of contaminant migration and transformation in highly heterogeneous aquifers,and evaluates mathematical methods describing the main non-Fickian dispersion features.This critical review also discusses the limitations of existing research and outlines potential future research areas to advance the understanding of mechanisms and modeling of non-Fickian dispersion in heterogeneous media.展开更多
An accurate quantification of the contaminant transport through fractured media is critical for dealing with water-quality related scientific and engineering issues, where the dispersion coefficient is an important an...An accurate quantification of the contaminant transport through fractured media is critical for dealing with water-quality related scientific and engineering issues, where the dispersion coefficient is an important and elusive parameter for the solute transport modeling. Many previous studies show that the dispersion coefficient(D) in the standard advection-dispersion equation(ADE) model can be approximated by D=avλ(where a is the dispersivity), a formula to be revisited systematically in this study by laboratory experiments and model analysis. First, a series of tracer transport experiments in single empty fractures are conducted in cases of different hydraulic gradients. Second, the tracer breakthrough curves are determined by simulations based on the ADE model, to obtain the dispersion coefficients corresponding to various fracture roughnesses and flow velocities. A varying trend of λ is analyzed under different flow conditions. Results show that although the standard ADE model cannot be used to characterize the late-time tailing of the tracer BTCs, likely due to the solute retention, this simple model can simulate most of the solute mass dynamics moving through fractures and may therefore provide information for estimating the dispersion in parsimonious models appropriate for the non-Fickian transport. The following three conclusions are drawn:(1) the peak of the breakthrough curves comes earlier with increasing the roughness, according to the ADE simulation,(2) the value of λ generally decreases as the relative roughness of the fracture increases,(3) the value of λ is approximately equal to 2.0 when the dispersion is dominated by the molecular diffusion in the smooth fracture.展开更多
Permeable reactive barrier(PRB) filled with zero valent iron(ZVI, Fe0) can be an effective option to remove nitrate from contaminated groundwater. The long-term performance of such PRBs, however, might be compromi...Permeable reactive barrier(PRB) filled with zero valent iron(ZVI, Fe0) can be an effective option to remove nitrate from contaminated groundwater. The long-term performance of such PRBs, however, might be compromised by the problem of declining reactivity and permeability, which could cause a decrease in the nitrate removal efficiency. In this study we explored suitable model formulations that allow for a process-based quantification of the passivation effect on denitrification rates and tested the model for a 40 years long operation scenario. The conceptual model underlying our selected formulation assumes the declining reactivity of the ZVI material through the progressing passivation caused by the precipitation of secondary minerals and the successive depletion of the ZVI material. Two model scenarios, i.e., the base model scenario which neglects the explicit consideration of the passivation effect and one performed with the model in which the impact of the passivation effect on denitrification was considered, were compared. The modeling results illustrate that nitrate removal in the model of considered passivation started to be incomplete after 10 years, and the effluent nitrate concentration of PRB rose up to 86% of the injected water concentration after 40 years, in contrast to the base scenario, corresponding well with the field observations of successively declining nitrate removal efficiencies. The model results also showed that the porosity of the PRB increased in both models. In order to improve and recover the reactivity of ZVI, pyrite was added to the PRB, resulting in completely nitrate removal and lower consumption of ZVI.展开更多
Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Car...Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.51979137,51779079,41931292)。
文摘Using allelochemicals to suppress cyanobacteria growth is a prospective method for its high efficiency and ecological safety.However,the suppression efficiency is affected inevitably by the extracellular polymeric substances(EPS)produced by cyanobacteria,and the knowledge about the roles of EPS in resistance to allelochemical stress is scarce.For the study,two typical anti-cyanobacterial allelochemicals were adopted to investigate the role of EPS in resistance to allelochemical stress on Microcystis aeruginosa.Results show that EPS was crucial in alleviating the toxicity of allelochemicals to algae,especially in stabilizing the metabolism and photosynthetic activity of algal cells.The aggregation rate of algal cells increased with the increase of EPS secretion,which alleviated the stress of allelopathy.Tryptophan proteins and humic acids in EPS provided a binding site for allelochemicals,and the EPS-allelochemicals complex were formed by chemical bonding.This study improved our comprehension of the role of EPS in algal inhibition by allelochemicals.
基金Supported by the National Natural Science Foundation of China(Nos.42007332,51979137)the Natural Science Foundation of Jiangsu Province(No.20KJB610001)。
文摘Colloidal particles,heterogeneous mixture with various organic components and continuous molecular weight(MW)distribution,is omnipresent in lake sediments and substantially influence the retention,transportation,and fate of contaminants in lake ecosystem.We sampled and extracted sedimentary colloids from different ecology regions in Taihu Lake,Jiangsu,East China,in June 2020,and they were further separated into four different particle size ranges by tangent ultrafiltration,and the properties of colloids were studied in various methods,including zeta potential analysis,transmission electron micrograph images(TEM),Fourier transformation infrared(FTIR),and 3D fluorescence.Results show that the surface of the colloids is covered with organic macromolecular substances,such as humuslike substances and protein-like substances.There were significant differences in molecular weight and fraction content of colloids in the sediments from macrophyte-dominant(MD)area and algae-dominant(AD)area in the lake.Colloids from MD area are mainly composed of humic acid,protein,and fulvic acid;the content of fulvic acid is lower than that of humic acid and protein.The humic acid exists mainly in small molecular weight(10-100 kDa),protein exists in mainly large molecular weight colloids(0.45-1μm).Colloids from AD area are mainly composed of humic acid,and mainly distributed in the molecular weight(10 kDa-0.45μm).The presence of humic acid inhibits effectively the agglomeration of the colloids.Especially,the stability of colloids is closely related to the molecular weight,with low molecular weight from MD area show higher stability.The existence of humic acid in colloids increases the electrostatic repulsion between colloidal particles,which can effectively inhibit the agglomeration of colloids,thus enhancing the stability of colloids.Furthermore,both monovalent and divalent electrolytes enhance colloidal aggregation,and the low-molecular-weight(LMW)colloid fraction exhibits higher stability efficiency than the high-molecular-weight(HMW)colloidal.
文摘Interconnected components of water cycle, including surface water, groundwater, and precipitation, can exhibit complex hydrologic dynamics. This study investigates dynamics embedded in surface water, groundwater, and precipitation time series data in the Lake Tuscaloosa watershed located in northern Alabama, using standard statistics and non-stationarity analysis. Standard statistics analysis shows that less water is available in this watershed over time. A significant correlation between different data sets is found, and groundwater is found to be slower evolving than its nearby surface systems. Non-stationarity analysis based on time scale-local Hurst exponents calculated by the multifractal detrended fluctuation approach shows that, on one hand, the stream system exhibits non-stationarity properties similar to precipitation, as expected. On the other hand, groundwater and lake stage non-stationarity is found to be influenced by the seasonal variation in rainfall and the long-term anthropogenic factors. Therefore, sustainability of surface water and aquifer may be affected by natural input and/or anthropogenic activity, both of which can evolve non-stationary in different time scales.
基金supported by the National Key R&D Program of China(Grant No.2017YFC0405203)the National Natural Science Foundation of China(Grants No.11572112,41628202,and 41330632)
文摘Quantitative description of turbulence using simple physical/mathematical models remains a challenge in classical physics and hydrologic dynamics. This study monitored the turbulence velocity field at the surface and bottom of Taihu Lake, in China, a large shallow lake with a heterogeneous complex system, and conducted a statistical analysis of the data for the local turbulent structure. Results show that the measured turbulent flows with finite Reynolds numbers exhibit properties of non-Gaussian distribution. Compared with the normal distribution, the Levy distribution with meaningful parameters can better characterize the tailing behavior of the measured turbulence. Exit-distance statistics and multiscaling extended self-similarity(ESS) were used to interpret turbulence dynamics with different scale structures. Results show that the probability density function of the reverse structure distance and the multiscaling ESS can effectively capture the turbulent flow dynamics varying with water depth. These results provide an approach for quantitatively analyzing multiscale turbulence in large natural lakes.
基金supported by the National Natural Science Foundation of China(Grants No.41330632,41628202,and 11572112)
文摘Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.
基金funded by National Natural Science Foundation of China(Grant No.42072149)support of US National Science Foundation grant(Grant No.EAR-1255724)。
文摘Despite the upsurge in hydrocarbon exploration in the Lake Albert Rift Basin(LARB)over the past three decades,systematic characterization of hydrocarbon compositions remains lacking,leading to uncertainties in source rock and oil generation determination.We characterized crude oil compositions and oil sand samples in the northern and southern subbasins of LARB.The relative abundance of normal and branched linear alkanes,hopanes,steranes,and aromatic hydrocarbon suggest that northern and southern hydrocarbons were deposited in anoxic to suboxic lacustrine environments and share similar biological source compositions(i.e.,a mixture of plants and aquatic algae and bacteria).Relative to southern samples,northern samples show more negative δ^(13)C values for oils,saturates and aromatics,indicating longer migration paths,and exhibit higher MPI-1,DNR-1 and 4-/1-MDBT ratios,indicating higher maturity.Between the two possible sets of source rocks(upper Miocene and Jurassic strata),the positive δ^(13)C values of saturated hydrocarbons(average=-20.5‰)suggest that the upper Miocene lacustrine shale is the most likely candidate.Oleanane index(<5% in our samples)does not exclude either source rock possibility,and C_(28)/C_(29) regular sterane(average=0.63)may be biased by high terrestrial inputs in a lacustrine setting.Together,our data show that northern and southern oils originate from the same source rocks but different oil kitchens.Given the similar geochemical characteristics of southern and northern oils,previous exploration successes in the northern subbasin likely suggest similar potential in the southern sector,while other elements influencing exploration success must be also evaluated.
文摘Annually, coal-fired electric power plants produce large volumes of potentially hazardous coal combustion products (CCPs) including fly ash. Since majority of the coal fly ash and other CCPs deposited in dry land fills or wet lagoons, they pose risk of contamination to local environment. In this study, we present results of leaching kinetics for As, Mo, and Se from three acidic fly ash samples collected from coal-fired power plants in the southeastern United States. This study shows that the leachate concentrations of As, Mo, and Se increase over time. Three kinetics equations, pseudo-second order, Elovich, and power-function, are able to adequately describe the experimental leaching kinetics data. Experimental leaching data and modeling results indicate that the rate limiting leaching of As, Mo, and Se is controlled by the diffusional process responsible for transferring these elements from interior to the surface of the particles as well as the dissolution of the fly ash particles. Therefore, it is important to adopt effective containment/treatment schemes to avoid potential and persistent dispersion of trace elements from ash disposal facilities to surrounding environment for a long time.
文摘The objective of this research was to quantify the temporal variation of dissolved organic matter(DOM) in five distinct waterbodies in watersheds with diverse types of land use and land cover in the presence and absence of sunlight. The water bodies were an agricultural pond, a lake in a forested watershed, a man-made reservoir, an estuary, and a bay. Two sets of samples were prepared by dispensing unfiltered samples into filtered samples in 1:10 ratio(V/V). The first set was exposed to sunlight(10 hr per day for 30 days) for examining the combined effect of photo-biodegradation, while the second set was stored in dark for examining biodegradation alone. Spectroscopic measurements in tandem with multivariate statistics were used to interpret DOM lability and composition. The results suggest that the agricultural pond behaved differently compared to other study locations during degradation experiments due to the presence of higher amount of microbial humic-like and protein-like components derived from microbial/anthropogenic sources. For all samples, a larger decrease in dissolved organic carbon(DOC) concentration(10.12% ±9.81% for photo-biodegradation and 6.65% ± 2.83% for biodegradation) and rapid transformation of DOM components(i.e., terrestrial humic-like components into microbial humic and protein-like components) were observed during photo-biodegradation experiments.Results suggest that sunlight facilitated DOM biodegradation, resulting in simpler recalcitrant molecules regardless of original composition. Overall, it was found that combined effects of light and bacteria are more efficient than bacterial effects alone in remineralizing and altering DOM, which highlights the crucial importance of sunlight in transforming aquatic DOM.
基金supported by the National Natural Science Foundation of China(Grant Nos.91225301,91025019 and 41271032)
文摘Numerical groundwater modeling is an effective tool to guide water resources management and explore complex groundwater-dependent ecosystems in arid regions.In the Heihe River Basin(HRB),China’s second largest inland river basin located in arid northwest China,a series of groundwater flow models have been developed for those purposes over the past 20 years.These models have elucidated the characteristics of groundwater flow systems and provided the scientific basis for a more sustainable management of groundwater resources and ecosystem services.The first part of this paper presents an overview of previous groundwater modeling studies and key lessons learned based on seven different groundwater models in the middle and lower HRB at sub-basin scales.The second part reviews the rationale for development of a regional basin-scale groundwater flow model that unifies previous sub-basin models.In addition,this paper discusses the opportunities and challenges in developing a regional groundwater flow model in an arid river basin such as the HRB.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.41272251,41372245)
文摘Laboratory experiments are designed in this paper using single fractures made of cement and coarse sand for a series of hydraulic tests under the conditions of different fracture apertures, and for the simulation of the evolution of the flow pattern at places far from the outlet. The relationship between the hydraulic gradient and the flow velocity at different points, and the proportion evolution of the linear and nonlinear portions in the Forchheimer formula are then discussed. Three major conclusions are obtained. First, the non-Darcian flow exists in a single fracture in different laboratory tests. Better fitting accuracy is obtained by using the Forchheimer formula than by using the Darcy law. Second, the proportion of the Darcy flow increases with the increase of the observation scale. In places far enough, the Darcy flow prevails, and the critical velocity between the non-Darcian flow and the Darcy flow decreases as the fracture aperture increases. Third, when the fracture aperture increases, the critical Reynolds number between the non-Darcian flow and the Darcy flow decreases.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41772250,41602256)
文摘A color visualization-based image processing method is developed in this paper to quantify the concentration evolution of the Brilliant Blue FCF transport through a two-dimensional homogeneous porous medium. A series of images are recorded at known time intervals, then the spatial distribution is estimated using a calibration curve, linking the gray pixel value to the solute concentration. Using a multi-dimensional concentration distribution map extraction technique the longitudinal and transverse concentration distributions could be observed with the physical model. The image-processed concentrations are then compared directly with the measured concentrations sampled at the outlet end. The tracer breakthrough curves sampled at multiple points along the central line of the medium are also compared with the solutions from the standard advection–dispersion equation model. It is shown that the non-invasive image processing method may be used to map the spatiotemporal evolution of a solute's concentration without disturbing the flow or the transport dynamics, although the measured solute breakthrough curves feature some non-Fickian dynamics that cannot be efficiently captured by the standard transport model.
基金supported by the National Key R&D Program of China(Grant No.2016YFC0402806)the National Natural Science Foundation of China(Grant Nos.41931292,42007162&41722208)the Natural Science Foundation of Guangdong Province(CN)(Grant No.2020A1515010891).
文摘Natural aquifers usually exhibit complex physical and chemical heterogeneities,which are key factors complicating kinetic processes,such as contaminant transport and transformation,posing a great challenge in the remediation of contaminated groundwater.Aquifer heterogeneity usually leads to a distinct feature,the so-called“anomalous transport”in groundwater,which deviates from the phenomenon described by the classical advection-dispersion equation(ADE)based on Fick’s Law.Anomalous transport,also known as non-Fickian dispersion or“anomalous dispersion”in a broad sense,can explain the hydrogeological mechanism that leads to the temporally continuous deterioration of water quality and rapid spatial expansion of pollutant plumes.Contaminants enter and then are retained in the low-permeability matrix from the high-permeability zone via molecular diffusion,chemical adsorption,and other mass exchange effects.This process can be reversed when the concentration of pollutants in high-permeability zones is relatively low.The contaminants slowly return to the high-permeability zones through reverse molecular diffusion,resulting in sub-dispersive anomalous transport leading to the chronic gradual deterioration of water quality.Meanwhile,some contaminants are rapidly transported along the interconnected preferential flow paths,resulting in super-dispersive anomalous transport,which leads to the rapid spread of contaminants.Aquifer heterogeneity is also an important factor that constrains the efficacy of groundwater remediation,while the development,application,and evaluation of groundwater remediation technologies are usually based on the Fickian dispersion process predicted by the ADE equation.Comprehensive studies of the impacts of non-Fickian dispersion on contaminant transport and remediation are still needed.This article reviews the non-Fickian dispersion phenomenon caused by the heterogeneity of geological media,summarizes the processes and current understanding of contaminant migration and transformation in highly heterogeneous aquifers,and evaluates mathematical methods describing the main non-Fickian dispersion features.This critical review also discusses the limitations of existing research and outlines potential future research areas to advance the understanding of mechanisms and modeling of non-Fickian dispersion in heterogeneous media.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41831289,41877191 and 41772250)
文摘An accurate quantification of the contaminant transport through fractured media is critical for dealing with water-quality related scientific and engineering issues, where the dispersion coefficient is an important and elusive parameter for the solute transport modeling. Many previous studies show that the dispersion coefficient(D) in the standard advection-dispersion equation(ADE) model can be approximated by D=avλ(where a is the dispersivity), a formula to be revisited systematically in this study by laboratory experiments and model analysis. First, a series of tracer transport experiments in single empty fractures are conducted in cases of different hydraulic gradients. Second, the tracer breakthrough curves are determined by simulations based on the ADE model, to obtain the dispersion coefficients corresponding to various fracture roughnesses and flow velocities. A varying trend of λ is analyzed under different flow conditions. Results show that although the standard ADE model cannot be used to characterize the late-time tailing of the tracer BTCs, likely due to the solute retention, this simple model can simulate most of the solute mass dynamics moving through fractures and may therefore provide information for estimating the dispersion in parsimonious models appropriate for the non-Fickian transport. The following three conclusions are drawn:(1) the peak of the breakthrough curves comes earlier with increasing the roughness, according to the ADE simulation,(2) the value of λ generally decreases as the relative roughness of the fracture increases,(3) the value of λ is approximately equal to 2.0 when the dispersion is dominated by the molecular diffusion in the smooth fracture.
基金supported by the National Natural Science Foundation of China(Nos.41402213 and 51279016)the Open Fund of Three Gorges Research Center for Geo-hazard,Ministry of Education,China University of Geosciences(No.TGRC201403)+2 种基金the Open Fund of the Key Laboratory of Groundwater Contamination and Remediation,China Geological Survey(CGS)and Hebei Province(No.KF201508)the Foundation of Central Public Welfare Scientific Institute Basic Scientific Research(No.CKSF2016021/YT)the Technology Foundation for Selected Overseas Chinese Scholar,Ministry of Personnel of China(2014)
文摘Permeable reactive barrier(PRB) filled with zero valent iron(ZVI, Fe0) can be an effective option to remove nitrate from contaminated groundwater. The long-term performance of such PRBs, however, might be compromised by the problem of declining reactivity and permeability, which could cause a decrease in the nitrate removal efficiency. In this study we explored suitable model formulations that allow for a process-based quantification of the passivation effect on denitrification rates and tested the model for a 40 years long operation scenario. The conceptual model underlying our selected formulation assumes the declining reactivity of the ZVI material through the progressing passivation caused by the precipitation of secondary minerals and the successive depletion of the ZVI material. Two model scenarios, i.e., the base model scenario which neglects the explicit consideration of the passivation effect and one performed with the model in which the impact of the passivation effect on denitrification was considered, were compared. The modeling results illustrate that nitrate removal in the model of considered passivation started to be incomplete after 10 years, and the effluent nitrate concentration of PRB rose up to 86% of the injected water concentration after 40 years, in contrast to the base scenario, corresponding well with the field observations of successively declining nitrate removal efficiencies. The model results also showed that the porosity of the PRB increased in both models. In order to improve and recover the reactivity of ZVI, pyrite was added to the PRB, resulting in completely nitrate removal and lower consumption of ZVI.
文摘Non-Darcian flow has been well documented for fractured media, while the potential non-Darcian flow and its driven factors in field-scale discrete fracture networks (DFNs) remain obscure. This study conducts Monte Carlo simulations of water flow through DFNs to identify non-Darcian flow and non-Fickian pressure propagation in field-scale DFNs, by adjusting fracture density, matrix hydraulic conductivity, and the general hydraulic gradient. Numerical simulations and analyses show that interactions of the fracture architecture with the hydraulic gradient affect non-Darcian flow in DFNs, by generating and adjusting complex pathways for water. The fracture density affects significantly the propagation of hydraulic head/pressure in the DFN, likely due to fracture connectivity and flow channeling. The non-Darcian flow pattern may not be directly correlated to the non-Fickian pressure propagation process in the regional-scale DFNs, because they refer to different states of water flow and their controlling factors may not be the same. Findings of this study improve our understanding of the nature of flow in DFNs.