期刊文献+
共找到500篇文章
< 1 2 25 >
每页显示 20 50 100
Myelin histology:a key tool in nervous system research
1
作者 Óscar Darío García-García Víctor Carriel Jesús Chato-Astrain 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期277-281,共5页
The myelin sheath is a lipoprotein-rich,multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers.Due to the complex structure and composition of myelin,various... The myelin sheath is a lipoprotein-rich,multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers.Due to the complex structure and composition of myelin,various histological techniques have been developed over the centuries to evaluate myelin under normal,pathological or experimental conditions.Today,methods to assess myelin integrity or content are key tools in both clinical diagnosis and neuroscience research.In this review,we provide an updated summary of the composition and structure of the myelin sheath and discuss some histological procedures,from tissue fixation and processing techniques to the most used and practical myelin histological staining methods.Considering the lipoprotein nature of myelin,the main features and technical details of the different available methods that can be used to evaluate the lipid or protein components of myelin are described,as well as the precise ultrastructural techniques. 展开更多
关键词 fluorescence microscopy HISTOLOGY light microscopy lipid histochemistry metallographic techniques myelin histochemistry myelin immunohistochemistry myelin structure&composition myelin ultrastructural evaluation tissue fixation&processing
下载PDF
Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa
2
作者 Sam Enayati Karen Chang +10 位作者 Anton Lennikov Menglu Yang Cherin Lee Ajay Ashok Farris Elzaridi Christina Yen Kasim Gunes Jia Xie Kin-Sang Cho Tor Paaske Utheim Dong Feng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2543-2552,共10页
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho... Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 展开更多
关键词 bipolar cells electrical stimulation NEUROPROTECTION photoreceptor degeneration RETINA retinal explants retinitis pigmentosa transcorneal electrical stimulation WAVEFORM
下载PDF
Inhibition of Ehrlich ascites carcinoma growth by melatonin:Studies with micro-CT
3
作者 SEHER YILMAZ ZÜLEYHA DOĞANYIĞIT +5 位作者 MERT OCAK EVRIM SUNA ARIKAN SÖYLEMEZ ASLI OKAN OFLAMAZ SÜMEYYE UÇAR ŞÜKRÜATEŞ AMMAD AHMAD FAROOQI 《Oncology Research》 SCIE 2024年第1期175-185,共11页
Melatonin is a versatile indolamine synthesized and secreted by the pineal gland in response to the photoperiodic information received by the retinohypothalamic signaling pathway.Melatonin has many benefits,such as or... Melatonin is a versatile indolamine synthesized and secreted by the pineal gland in response to the photoperiodic information received by the retinohypothalamic signaling pathway.Melatonin has many benefits,such as organizing circadian rhythms and acting as a powerful hormone.We aimed to show the antitumor effects of melatonin in both in vivo and in vitro models through the mammalian target of rapamycin(mTOR)signaling pathway and the Argyrophilic Nucleolar Regulatory Region(AgNOR),using the Microcomputed Tomography(Micro CT).Ehrlich ascites carcinoma(EAC)cells were administered into the mice by subcutaneous injection.Animals with solid tumors were injected intraperitoneally with 50 and 100 mg/kg melatonin for 14 days.Volumetric measurements for the taken tumors were made with micro-CT imaging,immunohistochemistry(IHC),real-time polymerase chain reaction(PCR)and AgNOR.Statistically,the tumor tissue volume in the Tumor+100 mg/kg melatonin group was significantly lower than that in the other groups in the data obtained from micro-CT images.In the IHC analysis,the groups treated with Tumor+100 mg/kg melatonin were compared when the mTOR signaling pathway and factor 8(F8)expression were compared with the control group.It was determined that there was a significant decrease(p<0.05).Significant differences were found in the total AgNOR area/nuclear area(TAA/NA)ratio in the treatment groups(p<0.05).Furthermore,there were significant differences between the amount of mTOR mRNA for the phosphatidylinositol 3-kinase(PI3K),AKT Serine/Threonine Kinase(PKB/AKT)genes(p<0.05).Cell apoptosis was evaluated with Annexin V in an in vitro study with different doses of melatonin;It was observed that 100µg/mL melatonin dose caused an increase in the apoptotic cell death.In this study,we have reported anti-tumor effects of melatonin in cell culture studies as well as in mice models.Comprehensive characterization of the melatonin-mediated cancer inhibitory effects will be valuable in advancing our fundamental molecular understanding and translatability of pre-clinical findings to earlier phases of clinical trials. 展开更多
关键词 Signaling pathway Apoptosis Real-time PCR AGNOR
下载PDF
Effects of exosomes from mesenchymal stem cells on functional recovery of a patient with total radial nerve injury: A pilot study
4
作者 ErdinçCivelek Serdar Kabatas +4 位作者 Eyüp Can Savrunlu Furkan Diren Necati Kaplan Demet Ofluoğlu Erdal Karaöz 《World Journal of Stem Cells》 SCIE 2024年第1期19-32,共14页
BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the exist... BACKGROUND Peripheral nerve injury can result in significant clinical complications that have uncertain prognoses.Currently,there is a lack of effective pharmacological interventions for nerve damage,despite the existence of several small compounds,Despite the objective of achieving full functional restoration by surgical intervention,the persistent challenge of inadequate functional recovery remains a significant concern in the context of peripheral nerve injuries.AIM To examine the impact of exosomes on the process of functional recovery following a complete radial nerve damage.METHODS A male individual,aged 24,who is right-hand dominant and an immigrant,arrived with an injury caused by a knife assault.The cut is located on the left arm,specifically below the elbow.The neurological examination and electrodiagnostic testing reveal evidence of left radial nerve damage.The sural autograft was utilized for repair,followed by the application of 1 mL of mesenchymal stem cell-derived exosome,comprising 5 billion microvesicles.This exosome was split into four equal volumes of 0.25 mL each and delivered microsurgically to both the proximal and distal stumps using the subepineural pathway.The patient was subjected to a period of 180 d during which they had neurological examination and electrodiagnostic testing.RESULTS The duration of the patient’s follow-up period was 180 d.An increasing Tinel’s sign and sensory-motor recovery were detected even at the 10th wk following nerve grafting.Upon the conclusion of the 6-mo post-treatment period,an evaluation was conducted to measure the extent of improvement in motor and sensory functions of the nerve.This assessment was based on the British Medical Research Council scale and the Mackinnon-Dellon scale.The results indicated that the level of improvement in motor function was classified as M5,denoting an excellent outcome.Additionally,the level of improvement in sensory function was classified as S3+,indicating a good outcome.It is noteworthy that these assessments were conducted in the absence of physical therapy.At the 10th wk post-injury,despite the persistence of substantial axonal damage,the nerve exhibited indications of nerve re-innervation as evidenced by control electromyography(EMG).In contrast to the preceding.EMG analysis revealed a significant electrophysiological enhancement in the EMG conducted at the 6th-mo follow-up,indicating ongoing regeneration.CONCLUSION Enhanced comprehension of the neurobiological ramifications associated with peripheral nerve damage,as well as the experimental and therapy approaches delineated in this investigation,holds the potential to catalyze future clinical progress. 展开更多
关键词 Mesenchymal stem cell EXOSOMES Radial nerve Sural nerve
下载PDF
Knockdown of polypyrimidine tract binding protein facilitates motor function recovery after spinal cord injury 被引量:1
5
作者 Ri-Yun Yang Rui Chai +7 位作者 Jing-Ying Pan Jing-Yin Bao Pan-Hui Xia Yan-Kai Wang Ying Chen Yi Li Jian Wu Gang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期396-403,共8页
After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astr... After spinal cord injury(SCI),a fibroblast-and microglia-mediated fibrotic scar is formed in the lesion core,and a glial scar is formed around the fibrotic scar as a res ult of the activation and proliferation of astrocytes.Simultaneously,a large number of neuro ns are lost in the injured area.Regulating the dense glial scar and re plenishing neurons in the injured area are essential for SCI repair.Polypyrimidine tra ct binding protein(PTB),known as an RNA-binding protein,plays a key role in neurogenesis.Here,we utilized short hairpin RNAs(shRNAs)and antisense oligonucleotides(ASOs)to knock down PTB expression.We found that reactive spinal astrocytes from mice were directly reprogrammed into motoneuron-like cells by PTB downregulation in vitro.In a mouse model of compressioninduced SCI,adeno-associated viral shRNA-mediated PTB knockdown replenished motoneuron-like cells around the injured area.Basso Mouse Scale scores and forced swim,inclined plate,cold allodynia,and hot plate tests showed that PTB knockdown promoted motor function recovery in mice but did not improve sensory perception after SCI.Furthermore,ASO-mediated PTB knockdown improved motor function resto ration by not only replenishing motoneuron-like cells around the injured area but also by modestly reducing the density of the glial scar without disrupting its overall structure.Together,these findings suggest that PTB knockdown may be a promising therapeutic strategy to promote motor function recovery during spinal cord repair. 展开更多
关键词 antisense oligonucleotides ASTROCYTES glial scar motoneuron-like cells motor function NEUROGENESIS neuron-like cells polypyrimidine tract binding protein short hairpin RNAs spinal cord repair
下载PDF
Molecular and cellular changes in the post-traumatic spinal cord remodeling after autoinfusion of a genetically-enriched leucoconcentrate in a mini-pig model 被引量:1
6
作者 Maria Aleksandrovna Davleeva Ravil Rasimovich Garifulin +9 位作者 Farid Vagizovich Bashirov Andrei Aleksandrovich Izmailov Leniz Faritovich Nurullin Ilnur Ildusovich Salafutdinov Dilara Zilbarovna Gatina Dmitrij Nikolaevich Shcherbinin Andrei Aleksandrovich Lysenko Irina Leonidovna Tutykhina Maksim Mikhailovich Shmarov Rustem Robertovich Islamov 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1505-1511,共7页
Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is prop... Post-traumatic spinal cord remodeling includes both degenerating and regenerating processes,which affect the potency of the functional recovery after spinal cord injury(SCI).Gene therapy for spinal cord injury is proposed as a promising therapeutic strategy to induce positive changes in remodeling of the affected neural tissue.In our previous studies for delivering the therapeutic genes at the site of spinal cord injury,we developed a new approach using an autologous leucoconcentrate transduced ex vivo with chimeric adenoviruses(Ad5/35)carrying recombinant cDNA.In the present study,the efficacy of the intravenous infusion of an autologous genetically-enriched leucoconcentrate simultaneously producing recombinant vascular endothelial growth factor(VEGF),glial cell line-derived neurotrophic factor(GDNF),and neural cell adhesion molecule(NCAM)was evaluated with regard to the molecular and cellular changes in remodeling of the spinal cord tissue at the site of damage in a model of mini-pigs with moderate spinal cord injury.Experimental animals were randomly divided into two groups of 4 pigs each:the therapeutic(infused with the leucoconcentrate simultaneously transduced with a combination of the three chimeric adenoviral vectors Ad5/35‐VEGF165,Ad5/35‐GDNF,and Ad5/35‐NCAM1)and control groups(infused with intact leucoconcentrate).The morphometric and immunofluorescence analysis of the spinal cord regeneration in the rostral and caudal segments according to the epicenter of the injury in the treated animals compared to the control mini-pigs showed:(1)higher sparing of the grey matter and increased survivability of the spinal cord cells(lower number of Caspase-3-positive cells and decreased expression of Hsp27);(2)recovery of synaptophysin expression;(3)prevention of astrogliosis(lower area of glial fibrillary acidic protein-positive astrocytes and ionized calcium binding adaptor molecule 1-positive microglial cells);(4)higher growth rates of regeneratingβIII-tubulin-positive axons accompanied by a higher number of oligodendrocyte transcription factor 2-positive oligodendroglial cells in the lateral corticospinal tract region.These results revealed the efficacy of intravenous infusion of the autologous genetically-enriched leucoconcentrate producing recombinant VEGF,GDNF,and NCAM in the acute phase of spinal cord injury on the positive changes in the post-traumatic remodeling nervous tissue at the site of direct injury.Our data provide a solid platform for a new ex vivo gene therapy for spinal cord injury and will facilitate further translation of regenerative therapies in clinical neurology. 展开更多
关键词 autologous genetically-enriched leucoconcentrate chimeric adenoviral vector gene therapy glial cell line-derived neurotrophic factor MINI-PIG neural cell adhesion molecule spinal cord contusion injury vascular endothelial growth factor
下载PDF
Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive properties of human umbilical cord mesenchymal stem cells 被引量:1
7
作者 Hang Li Xiao-Qing Ji +1 位作者 Shu-Ming Zhang Ri-Hui Bi 《World Journal of Stem Cells》 SCIE 2023年第11期999-1016,共18页
BACKGROUND Mesenchymal stem cells(MSCs)have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties.However,MSCs exposed to the harsh inflammatory environment of da... BACKGROUND Mesenchymal stem cells(MSCs)have great potential for the treatment of various immune diseases due to their unique immunomodulatory properties.However,MSCs exposed to the harsh inflammatory environment of damaged tissue after intravenous transplantation cannot exert their biological effects,and therefore,their therapeutic efficacy is reduced.In this challenging context,an in vitro preconditioning method is necessary for the development of MSC-based therapies with increased immunomodulatory capacity and transplantation efficacy.AIM To determine whether hypoxia and inflammatory factor preconditioning increases the immunosuppressive properties of MSCs without affecting their biological characteristics.METHODS Umbilical cord MSCs(UC-MSCs)were pretreated with hypoxia(2%O_(2))exposure and inflammatory factors(interleukin-1β,tumor necrosis factor-α,interferon-γ)for 24 h.Flow cytometry,polymerase chain reaction,enzyme-linked immunosorbent assay and other experimental methods were used to evaluate the biological characteristics of pretreated UC-MSCs and to determine whether pretreatment affected the immunosuppressive ability of UC-MSCs in coculture with immune cells.RESULTS Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their viability,proliferation or size.In addition,pretreatment significantly decreased the expression of coagulationrelated tissue factors but did not affect the expression of other surface markers.Similarly,mitochondrial function and integrity were retained.Although pretreatment promoted UC-MSC apoptosis and senescence,it increased the expression of genes and proteins related to immune regulation.Pretreatment increased peripheral blood mononuclear cell and natural killer(NK)cell proliferation rates and inhibited NK cell-induced toxicity to varying degrees.CONCLUSION In summary,hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs without damaging their biological characteristics. 展开更多
关键词 Mesenchymal stem cells Umbilical cord PRECONDITIONING Hypoxia Inflammatory factors Immune regulation
下载PDF
Allogeneic stem cell transplantation in the treatment of acute myeloid leukemia: An overview of obstacles and opportunities 被引量:1
8
作者 Yong-Feng Chen Jing Li +2 位作者 Ling-Long Xu Mihnea-Alexandru Găman Zhen-You Zou 《World Journal of Clinical Cases》 SCIE 2023年第2期268-291,共24页
As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation(allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements... As an important treatment for acute myeloid leukemia, allogeneic hematopoietic stem cell transplantation(allo-HSCT) plays an important role in reducing relapse and improving long-term survival. With rapid advancements in basic research in molecular biology and immunology and with deepening understanding of the biological characteristics of hematopoietic stem cells, allo-HSCT has been widely applied in clinical practice. During allo-HSCT, preconditioning, the donor, and the source of stem cells can be tailored to the patient’s conditions, greatly broadening the indications for HSCT, with clear survival benefits. However, the risks associated with allo-HSCT remain high, i.e. hematopoietic reconstitution failure, delayed immune reconstitution, graft-versus-host disease, and posttransplant relapse, which are bottlenecks for further improvements in allo-HSCT efficacy and have become hot topics in the field of HSCT. Other bottlenecks recognized in the current treatment of individuals diagnosed with acute myeloid leukemia and subjected to allo-HSCT include the selection of the most appropriate conditioning regimen and post-transplantation management. In this paper, we reviewed the progress of relevant research regarding these aspects. 展开更多
关键词 Hematopoietic stem cell TRANSPLANTATION Allogeneic hematopoietic stem cell transplantation LEUKEMIA TREATMENT
下载PDF
Chitosan conduits enriched with fibrin-collagen hydrogel with or without adipose-derived mesenchymal stem cells for the repair of 15-mm-long sciatic nerve defect
9
作者 Marwa El Soury óscar Darío García-García +6 位作者 Isabella Tarulli Jesús Chato-Astrain Isabelle Perroteau Stefano Geuna Stefania Raimondo Giovanna Gambarotia Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1378-1385,共8页
Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Holl... Hollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair;however,results are still not comparable with the current gold standard technique“autografts”.Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair.Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.In this study,we evaluated nerve regeneration in vivo using hollow chitosan conduits or conduits enriched with fibrin-collagen hydrogels alone or with the further addition of adipose-derived mesenchymal stem cells in a 15 mm rat sciatic nerve transection model.Unexpected changes in the hydrogel consistency and structural stability in vivo led to a failure of nerve regeneration after 15 weeks.Nevertheless,the molecular assessment in the early regeneration phase(7,14,and 28 days)has shown an upregulation of useful regenerative genes in hydrogel enriched conduits compared with the hollow ones.Hydrogels composed of fibrin-collagen were able to upregulate the expression of soluble NRG1,a growth factor that plays an important role in Schwann cell transdifferentiation.The further enrichment with adipose-derived mesenchymal stem cells has led to the upregulation of other important genes such as ErbB2,VEGF-A,BDNF,c-Jun,and ATF3. 展开更多
关键词 adipose-derived stem cells chitosan conduit fibrin and collagen hydrogel nerve regeneration nerve repair neuregulin 1 peripheral nerve sciatic nerve
下载PDF
Peripheral nerve regeneration through nerve conduits evokes differential expression of growth-associated protein-43 in the spinal cord
10
作者 Jesús Chato-Astrain Olga Roda +5 位作者 David Sánchez-Porras Esther Miralles Miguel Alaminos Fernando Campos Óscar Darío García-García Víctor Carriel 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1852-1856,共5页
Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upreg... Growth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling.We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation.Conversely,the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.However,central alterations due to peripheral nerve damage have never been assessed using the growthassociated protein 43 marker.In this study,we used the tubulization technique to repair 1 cm-long nerve gaps in the rat nerve injury/repair model and detected growth-associated protein 43 expression in the peripheral and central nervous systems.First,histological analysis of the regeneration process confirmed an active regeneration process of the nerve gaps through the conduit from 10 days onwards.The growth-associated protein 43 expression profile varied across regions and follow-up times,from a localized expression to an abundant and consistent expression throughout the regeneration tissue,confirming the presence of an active nerve regeneration process.Second,spinal cord changes were also histologically assessed,and no apparent changes in the structural and cellular organization were observed using routine staining methods.Surprisingly,remarkable differences and local changes appeared in growth-associated protein 43 expression at the spinal cord level,in particular at 20 days post-repair and beyond.Growth-associated protein 43 protein was first localized in the gracile fasciculus and was homogeneously distributed in the left posterior cord.These findings differed from the growth-associated protein 43 pattern observed in the healthy control,which did not express growth-associated protein 43 at these levels.Our results revealed a differential expression in growth-associated protein 43 protein not only in the regenerating nerve tissue but also in the spinal cord after peripheral nerve transection.These findings open the possibility of using this marker to monitor changes in the central nervous system after peripheral nerve injury. 展开更多
关键词 growth-associated protein 43(GAP-43) IMMUNOHISTOCHEMISTRY nerve guide nerve tissue regeneration peripheral nerve repair spinal cord tissue engineering
下载PDF
Alginate/gelatin/boron-doped hydroxyapatite-coated Ti implants:in vitro and in vivo evaluation of osseointegration
11
作者 Ahmet E.Pazarçeviren Zafer Evis +4 位作者 Tayfun Dikmen Korhan Altunbas Mustafa V.Yaprakçı Dilek Keskin Aysen Tezcaner 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第3期217-242,共26页
In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.... In this study,boron-doped hydroxyapatite(BHT)-loaded alginate/gelatin-based(A/G)hydrogel coating on Ti was fabricated to support bone integration through triggering osteoinduction,vascularization and immunomodulation.Initially,highly reproducible,cheap and time-effective BHT was produced,which significantly promoted higher osteogenic and angiogenic maturation,while a mild innate immune response was observed.The immense potential of BHT was evidenced by the production of a gap-filling A/G/BHT interphase on Ti implants to mimic the osseous extracellular matrix to achieve functional bridging and exert control over the course of innate immune response.We initially aminosilanized the implant surface using 3-aminopropyl triethoxysilane,and then coated it with 0.25%w/v alginate with 20 mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide to allowthe A/G/BHT pre-gel to disperse evenly and covalently attach on the surface.The pre-gel was added with 0.2 M NaCl to homogeneously blend BHT in the structure without inducing ionic crosslinking.Then,the coated implants were freeze-dried and stored.The coated layer demonstrated high cohesive and adhesive strength,and 8-month-long shelf-life at room temperature and normal humidity.The A/G/BHT was able to coat an irregularly shaped Ti implant.Osteoblasts and endothelial cells thrived on the A/G/BHT,and it demonstrated greatly improved osteogenic and angiogenic capacity.Moreover,A/G/BHT maintained macrophage viability and generated an acute increase in immune response that could be resolved rapidly.Finally,A/G/BHT was shown to induce the robust integration of implant in a rabbit femur osteochondral model within 2months.Therefore,we concluded that A/G/BHT coatings could serve as amultifunctional reservoir,promoting the strong and rapid osseointegration of metallic implants. 展开更多
关键词 Boron Alginate/gelatin Implant coating Titanium Osteochondral model
下载PDF
Motor neuron-specific RhoA knockout delays degeneration and promotes regeneration of dendrites in spinal ventral horn after brachial plexus injury
12
作者 Mi Li Jiawei Xu +10 位作者 Ying Zou Jialing Lu Aiyue Ou Xinrui Ma Jiaqi Zhang Yizhou Xu Lanya Fu Jingmin Liu Xianghai Wang Libing Zhou Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2757-2761,共5页
Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be... Dendrites play irreplaceable roles in the nerve conduction pathway and are vulnerable to various insults.Peripheral axotomy of motor neurons results in the retraction of dendritic arbors,and the dendritic arbor can be re-expanded when reinnervation is allowed.RhoA is a target that regulates the cytoskeleton and promotes neuronal survival and axon regeneration.However,the role of RhoA in dendrite degeneration and regeneration is unknown.In this study,we explored the potential role of RhoA in dendrites.A line of motor neuronal conditional knockout mice was developed by crossbreeding HB9~(Cre+)mice with RhoA~(flox/flox)mice.We established two models for assaying dendrite degeneration and regeneration,in which the brachial plexus was transection or crush injured,respectively.We found that at 28 days after brachial plexus transection,the density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice were slightly decreased compared with that in Cre mice.Dendrites underwent degeneration at 7 and 14 days after brachial plexus transection and recovered at 28–56 days.The density,complexity,and structural integrity of dendrites in the ventral horn of the spinal cord of RhoA conditional knockout mice recovered compared with results in Cre mice.These findings suggest that RhoA knockout in motor neurons attenuates dendrite degeneration and promotes dendrite regeneration after peripheral nerve injury. 展开更多
关键词 brachial plexus conditional knockout DEGENERATION DENDRITES motor neuron peripheral nerve injury REGENERATION RHOA spinal cord ventral horn
下载PDF
Role of brahma-related gene 1/brahma-associated factor subunits in neural stem/progenitor cells and related neural developmental disorders
13
作者 Nai-Yu Ke Tian-Yi Zhao +2 位作者 Wan-Rong Wang Yu-Tong Qian Chao Liu 《World Journal of Stem Cells》 SCIE 2023年第4期235-247,共13页
Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent re... Different fates of neural stem/progenitor cells(NSPCs)and their progeny are determined by the gene regulatory network,where a chromatin-remodeling complex affects synergy with other regulators.Here,we review recent research progress indicating that the BRG1/BRM-associated factor(BAF)complex plays an important role in NSPCs during neural development and neural developmental disorders.Several studies based on animal models have shown that mutations in the BAF complex may cause abnormal neural differentiation,which can also lead to various diseases in humans.We discussed BAF complex subunits and their main characteristics in NSPCs.With advances in studies of human pluripotent stem cells and the feasibility of driving their differentiation into NSPCs,we can now investigate the role of the BAF complex in regulating the balance between self-renewal and differentiation of NSPCs.Considering recent progress in these research areas,we suggest that three approaches should be used in investigations in the near future.Sequencing of whole human exome and genome-wide association studies suggest that mutations in the subunits of the BAF complex are related to neurodevelopmental disorders.More insight into the mechanism of BAF complex regulation in NSPCs during neural cell fate decisions and neurodevelopment may help in exploiting new methods for clinical applications. 展开更多
关键词 Neural stem/progenitor cell BRG1/BRM-associated factor complex SUBUNIT Proliferation DIFFERENTIATION Neural developmental disorde
下载PDF
Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis
14
作者 Zixiao Wang Zihao Liu +15 位作者 Shan Wang Xin Bing Xiaoshuai Ji Dong He Min Han Yanbang Wei Chanyue Wang Qian Xia Jianqiao Yang Jiajia Gao Xianyong Yin Zhihai Wang Zehan Shang Jiacan Xu Tao Xin Qian Liu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期64-78,共15页
Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults.However,the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment.Ferropto... Glioblastoma is acknowledged as the most aggressive cerebral tumor in adults.However,the efficacy of current standard therapy is seriously undermined by drug resistance and suppressive immune microenvironment.Ferroptosis is a recently discovered form of iron-dependent cell death that may have excellent prospect as chemosensitizer.The utilization of ferropotosis inducer Erastin could significantly mediate chemotherapy sensitization of Temozolomide and exert anti-tumor effects in glioblastoma.In this study,a combination of hydrogel-liposome nanoplatform encapsulatedwith Temozolomide and ferroptosis inducer Erastin was constructed.Theαvβ3 integrin-binding peptide cyclic RGD was utilized to modify codelivery system to achieve glioblastoma targeting strategy.As biocompatible drug reservoirs,cross-linked GelMA(gelatin methacrylamide)hydrogel and cRGD-coated liposome realized the sustained release of internal contents.In the modified intracranial tumor resection model,GelMA-liposome system achieved slow release of Temozolomide and Erastin in situ for more than 14 d.The results indicated that nanoplatform(T+E@LPs-cRGD+GelMA)improved glioblastoma sensitivity to chemotherapeutic temozolomide and exerted satisfactory anti-tumor effects.It was demonstrated that the induction of ferroptosis could be utilized as a therapeutic strategy to overcome drug resistance.Furthermore,transcriptome sequencing was conducted to reveal the underlying mechanism that the nanoplatform(T+E@LPs-cRGD+GelMA)implicated in.It is suggested that GelMA-liposome system participated in the immune response and immunomodulation of glioblastoma via interferon/PD-L1 pathway.Collectively,this study proposed a potential combinatory therapeutic strategy for glioblastoma treatment. 展开更多
关键词 GLIOBLASTOMA RELAPSE Hydrogel-liposome Ferroptosis Drug resistance IMMUNOMODULATION
下载PDF
Protective effect of lycopene on Parkinson's disease cell model based on endoplasmic reticulum stress
15
作者 BAO Bo CHAI Xing-xing +3 位作者 DENG Zi-liang LIU Lu-lu ZHU Shao-ping LI Li-li 《Journal of Hainan Medical University》 CAS 2023年第14期15-21,共7页
Objective:To evaluate the effect of lycopene on Parkinson's disease cell model and its possible mechanism.Methods:The SH-SY5Y cells were treated with 0.5μmol/L rotenone for 24 h to establish Parkinson's disea... Objective:To evaluate the effect of lycopene on Parkinson's disease cell model and its possible mechanism.Methods:The SH-SY5Y cells were treated with 0.5μmol/L rotenone for 24 h to establish Parkinson's disease cell model.The experiments were randomly divided into the control group,the lycopene group,the rotenone group,the pretreatment groups of different concentrations lycopene(low,medium,high concentration).Cell viability was detected by CCK-8 assay,the morphological changes of cells were observed under an inverted microscope,Hoechst staining was used to observe cell apoptosis,the expression and distribution of endoplasmic reticulum stress marker proteins GRP78 and CHOP in each group were detected by Western blot and cell immunofluorescence.Results:The study found that compared with the control group,the cell viability in the rotenone group was significantly decreased with obvious apoptosis;compared with the rotenone group,the cell viability of the lycopene pretreatment group was improved,and the difference was statistically significant(P<0.05);The apoptosis in the lycopene pretreatment group was decreased.The expression of GRP78 and CHOP in the rotenone group was significantly higher than that in the control group(P<0.01),while the expression of both in the high concentration lycopene pretreatment group was lower than that in the rotenone group(P<0.05).Conclusion:Lycopene pretreatment had a significant protective effect on rotenone-induced SH-SY5Y cells,which may be related to the fact that lycopene pretreatment can effectively alleviate endoplasmic reticulum stress in SH-SY5Y cells damaged by rotenone. 展开更多
关键词 LYCOPENE ROTENONE Parkinson's disease Endoplasmic reticulum stress
下载PDF
Efficacy of Willis covered stent of intracranial pseudoaneurysms in the internal carotid artery: A systematic review and meta-analysis
16
作者 Li Lin Shao-Wei Xiang +8 位作者 Yan-Ling Sun Yuan Chen Zhe Wu Zhi-Feng Ning Ding-Wen Shen Xue-Qin Sima Qi-Qiang Wen Gui-Lai Wei Qing-Yong He 《Journal of Acute Disease》 2023年第5期173-178,共6页
Objective:To evaluate the efficacy of a novel coated stent in the treatment of intracranial pseudoaneurysm.Methods:MEDLINE,EMBASE,and PubMed databases were searched for literature published between 1990 and April 2022... Objective:To evaluate the efficacy of a novel coated stent in the treatment of intracranial pseudoaneurysm.Methods:MEDLINE,EMBASE,and PubMed databases were searched for literature published between 1990 and April 2022 according to PRISMA guidelines.All studies with≥10 patients reporting successful implantation of Willis covered stent,therapeutic effect,complications,and postoperative follow-up were included.The combined incidence and corresponding 95%confidence intervals were assessed using a generalized linear mixed method and random effects model.Results:Five studies(116 patients with pseudoaneurysms)were included.The experimental groups in the selected studies showed a combined technical success rate of 81.03%(OR=18.31,95%CI=9.39-35.69,I^(2)=79%,P<0.001).Clinical follow-up showed that the complete cure rate was as high as 94.4%after the follow-up(OR=106.81,95%CI=39.08-291.88,I^(2)=0%,P=0.71).Conclusions:Willis covered stent is feasible,safe,and effective in the treatment of intracranial pseudoaneurysm. 展开更多
关键词 Intracranial pseudoaneurysms Willis covered stent Systematic review META-ANALYSIS Internal carotid artery ENDOLEAK NEUROSURGERY
下载PDF
Can the Prediction of Intrauterine Insemination Results by Used Aniline Blue Stain (ABS) and Sperm Chromatin Dispersion (SCD) Levels?
17
作者 Talal Z. Al-Darawsha Nurten Dayioglu +1 位作者 Bushra R. Al-Azzawi Tulay Irez 《Advances in Reproductive Sciences》 CAS 2023年第1期1-10,共10页
Introduction: This study aimed to perform routine seminal fluid analysis, sperm DNA fragmentation, and sperm function tests at the chromatin maturation level and evaluate pregnancy in the patients passing intrauterine... Introduction: This study aimed to perform routine seminal fluid analysis, sperm DNA fragmentation, and sperm function tests at the chromatin maturation level and evaluate pregnancy in the patients passing intrauterine insemination before starting Intrauterine Insemination (IUI) method. Materials and Methods: In this prospective study, 111 couples who underwent Intrauterine Insemination (IUI) in unexplained infertility patients were admitted to Al-Farah IVF and assisted reproductive center in Baghdad, Iraq between November 2020 and February 2021 were evaluated. Semen fluid analysis was performed based on (WHO 4th) guiding rules. In addition, Sperm Chromatin Dispersion (halo test) and sperm maturation were performed with Aniline Blue Stain (ABS). Results: Sperm Chromatin Dispersion (SCD) groups were compared in terms of pregnancy outcome;the positive pregnancy rate was found to be above in the normal SCD groups (p = 0.0005). In addition, Aniline Blue Stain (ABS) groups were compared in the terms of pregnancy outcome;the positive pregnancy rate was found to be higher in the normal ABS group (p = 0.017). Conclusion: Our study showed that the use of DNA fragmentation (SCD) and sperm maturation tests (ABS) together with routine semen analysis in intrauterine insemination cases will make a significant contribution to the prediction of Intrauterine Insemination (IUI) increased results. So, these results indicate a defect in the effect of DNA fragmentation on the outcome of intrauterine insemination. 展开更多
关键词 Sperm Chromatin Dispersion Aniline Blue Stain Sperm DNA Fragmentation Intrauterine Insemination
下载PDF
About the Thermodynamics and Aging of Self-Organizing Systems
18
作者 Jorge Barragán Sebastián Sánchez 《Advances in Aging Research》 2023年第4期56-66,共11页
We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we... We know that the total daily energy dissipation increases in complex organisms like the humans. It’s very probable that this increase in total energy dissipation is related to the progressive increase in mass. But we also know that day by day the dissipation of energy per unit mass decreases in these organisms. We intend to verify if this decrease is only an expression of the second law of thermodynamics, or if it is related to the increase in mass that occurs in these organisms. For this, we set ourselves the following objectives: verify the correlation between total energy dissipation and the evolution of body mass, and verify the correlation between the dissipation of energy per unit of mass and the evolution of body mass. As a result of the data analysis, we found a high degree of correlation between total energy dissipation and the evolution of body mass. And we also found a high correlation between the energy dissipated per unit of mass and the evolution of body mass. We can conclude that self-organization produces not only an increase in mass, but also a decline in energy dissipation per unit mass beyond what is expected by the second law of thermodynamics. 展开更多
关键词 Body Mass Energy Dissipation Neutral Operator Structural Geometry Information Density Inertial Systems Non-Inertial Systems
下载PDF
Progress in the research of cuproptosis and possible targets for cancer therapy
19
作者 Jiang Wang Lan-Zhu Luo +4 位作者 Dao-Miao Liang Chao Guo Zhi-Hong Huang Guo-Ying Sun Jie Wen 《World Journal of Clinical Oncology》 2023年第9期324-334,共11页
Developing novel cancer therapies that exploit programmed cell death pathways holds promise for advancing cancer treatment.According to a recently published study in Science,copper death(cuproptosis)occurs when intrac... Developing novel cancer therapies that exploit programmed cell death pathways holds promise for advancing cancer treatment.According to a recently published study in Science,copper death(cuproptosis)occurs when intracellular copper is overloaded,triggering aggregation of lipidated mitochondrial proteins and Fe–S cluster proteins.This intriguing phenomenon is triggered by the instability of copper ions.Understanding the molecular mechanisms behind cuproptosis and its associated genes,as identified by Tsvetkov,including ferredoxin 1,lipoic acid synthase,lipoyltransferase 1,dihydrolipid amide dehydrogenase,dihydrolipoamide transacetylase,pyruvate dehydrogenaseα1,pyruvate dehydrogenaseβ,metallothionein,glutaminase,and cyclin-dependent kinase inhibitor 2A,may open new avenues for cancer therapy.Here,we provide a new understanding of the role of copper death and related genes in cancer. 展开更多
关键词 Cuproptosis Cuproptosis-related genes CANCER Targeted therapy
下载PDF
Increasingβ-hexosaminidase A activity using genetically modified mesenchymal stem cells
20
作者 Alisa A.Shaimardanova Daria S.Chulpanova +8 位作者 Valeriya V.Solovуeva Shaza S.Issa Aysilu I.Mullagulova Angelina A.Titova Yana O.Mukhamedshina Anna V.Timofeeva Alexander M.Aimaletdinov Islam R.Nigmetzyanov Albert A.Rizvanov 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期212-219,共8页
GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorde rs.These diseases result from a deficiency of lysosomal enzymeβ-hexosaminidase A(HexA),which is responsible for GM2 ganglioside degradat... GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorde rs.These diseases result from a deficiency of lysosomal enzymeβ-hexosaminidase A(HexA),which is responsible for GM2 ganglioside degradation.HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells,leading to severe progressive neurodegeneration and neuroinflammation.To date,there is no treatment for these diseases.Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses.This study aimed to evaluate the ability of genetically modified mesenchymal stem cells(MSCs-HEXA-HEXB)to restore HexA deficiency in Tay-Sachs disease patient cells,as well as to analyze the functionality and biodistribution of MSCs in vivo.The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon intera ction with MSCs-HEXA-HEXB.The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme,detectable in vivo,and intravenous injection of the cells does not cause an immune response in animals.These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses. 展开更多
关键词 adeno-associated viral vectors cell therapy cell-mediated gene therapy gene therapy GM2 gangliosidosis Sandhoff disease Tay-Sachs disease β-hexosaminidase
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部