Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a...Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a nonattracting closed orbit. Smith<sup class='a-plus-plus'>[3]</sup> considered a three-dimensional irreducible competitive system and showed that an ω-limit set containing no equilibrium must be a closed orbit which has a simple Floquet multiplier λ<1, and may be attracting. In this paper we carry out the qualitative analysis of a class of competitive and cooperative systems, and a generalization of the result of Levine<sup class='a-plus-plus'>[4]</sup> is given. The stability problem of closed orbits raised in [5] and [6] is resolved.展开更多
文摘Hirsch[1,2] studied the limiting behavior of solutions of competitive or cooperative systems, and showed that ifL is an ω-limit set of a three-dimensional cooperative system, which contains no equilibrium, thenL is a nonattracting closed orbit. Smith<sup class='a-plus-plus'>[3]</sup> considered a three-dimensional irreducible competitive system and showed that an ω-limit set containing no equilibrium must be a closed orbit which has a simple Floquet multiplier λ<1, and may be attracting. In this paper we carry out the qualitative analysis of a class of competitive and cooperative systems, and a generalization of the result of Levine<sup class='a-plus-plus'>[4]</sup> is given. The stability problem of closed orbits raised in [5] and [6] is resolved.