The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorptio...The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.展开更多
In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical ...In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.展开更多
Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simula...Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simulation results show that the main mechanisms of ablation are evaporation and tensile stresses generated inside the target. The velocity of stress wave is predicted to be nearly equal to sound velocity. The rates of ablation at different fluences obtained from simulations are in good agreement with experimental data. Superheating phen omenon is also discovered.展开更多
基金the Ministerial Level Advanced Research Foundation (ABAQ440261)
文摘The dynamical progresses involved in ultra-short laser pulse ablation of face-centered cubic metals under stress confinement condition are described completely using molecular dynamics method. The laser beam absorption and thermal energy turning into kinetics energy of. atoms are taken into account to give a detailed picture of laser metal interaction. Superheating phenomenon is observed, and the phase change from solid to liquid is characterized by a destroyed atom configuration and a decreased number density. The steep velocity gradients are found in the systems of Cu and Ni after pulse in consequence of located heating and exponential decrease of fluences following the Lambert-Beer expression. The shock wave velocities are predicted to be about 5 000 m/s in Cu and 7 200 m/s in Ni. The higher ablation rates are obtained from simulations compared with experimental data as a result of a well-defined crystalline surface irradiated by a single pulse. Simulation results show that the main mechanisms of ablation are evaporation and thermoelastic stress due to located heating.
文摘In this paper, the main objective is to identify the parameters of motors, which includes a brushless direct current (BLDC) motor and an induction motor. The motor systems are dynamically formulated by the mechanical and electrical equations. The real-coded genetic algorithm (RGA) is adopted to identify all parameters of motors, and the standard genetic algorithm (SRGA) and various adaptive genetic algorithm (ARGAs) are compared in the rotational angular speeds and fitness values, which are the inverse of square differences of angular speeds. From numerical simulations and experimental results, it is found that the SRGA and ARGA are feasible, the ARGA can effectively solve the problems with slow convergent speed and premature phenomenon, and is more accurate in identifying system’s parameters than the SRGA. From the comparisons of the ARGAs in identifying parameters of motors, the best ARGA method is obtained and could be applied to any other mechatronic systems.
文摘Using molecular dynamics (MD) methods combining with two-step radiation heating model, the mechanisms of ablation and the thermodynamic states at Ni surface under femtosecond laser irradiation are investigated. Simulation results show that the main mechanisms of ablation are evaporation and tensile stresses generated inside the target. The velocity of stress wave is predicted to be nearly equal to sound velocity. The rates of ablation at different fluences obtained from simulations are in good agreement with experimental data. Superheating phen omenon is also discovered.