期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Additive manufacturing of Ni-based superalloys: Residual stress, mechanisms of crack formation and strategies for crack inhibition 被引量:1
1
作者 Chuan Guo Gan Li +8 位作者 Sheng Li Xiaogang Hu Hongxing Lu Xinggang Li Zhen Xu Yuhan Chen Qingqing Li Jian Lu Qiang Zhu 《Nano Materials Science》 EI CAS CSCD 2023年第1期53-77,共25页
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig... The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components. 展开更多
关键词 Additive manufacturing Ni-based superalloys Residual stress Mechanisms of crack formation Methods of crack inhibition
下载PDF
Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low‑Strain and Fast‑Charging Anode for Lithium‑Ion Batteries
2
作者 Zhenwei Li Meisheng Han +2 位作者 Peilun Yu Junsheng Lin Jie Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期333-351,共19页
Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by unifor... Fabricating low-strain and fast-charging silicon-carbon composite anodes is highly desired but remains a huge challenge for lithium-ion batteries.Herein,we report a unique silicon-carbon composite fabricated by uniformly dis-persing amorphous Si nanodots(SiNDs)in carbon nanospheres(SiNDs/C)that are welded on the wall of the macroporous carbon framework(MPCF)by vertical graphene(VG),labeled as MPCF@VG@SiNDs/C.The high dispersity and amor-phous features of ultrasmall SiNDs(~0.7 nm),the flexible and directed electron/Li+transport channels of VG,and the MPCF impart the MPCF@VG@SiNDs/C more lithium storage sites,rapid Li+transport path,and unique low-strain property during Li+storage.Consequently,the MPCF@VG@SiNDs/C exhibits high cycle stability(1301.4 mAh g^(-1) at 1 A g^(-1) after 1000 cycles without apparent decay)and high rate capacity(910.3 mAh g^(-1),20 A g^(-1))in half cells based on industrial electrode standards.The assembled pouch full cell delivers a high energy density(1694.0 Wh L^(-1);602.8 Wh kg^(-1))and an excellent fast-charging capability(498.5 Wh kg^(-1),charging for 16.8 min at 3 C).This study opens new possibilities for preparing advanced silicon-carbon com-posite anodes for practical applications. 展开更多
关键词 Amorphous Si nanodots Low-strain Fast-charging Lithium-ion batteries
下载PDF
Highly Efficient Aligned Ion‑Conducting Network and Interface Chemistries for Depolarized All‑Solid‑State Lithium Metal Batteries
3
作者 Yongbiao Mu Shixiang Yu +12 位作者 Yuzhu Chen Youqi Chu Buke Wu Qing Zhang Binbin Guo Lingfeng Zou Ruijie Zhang Fenghua Yu Meisheng Han Meng Lin Jinglei Yang Jiaming Bai Lin Zeng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期102-119,共18页
Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact l... Improving the long-term cycling stability and energy density of all-solid-state lithium(Li)-metal batteries(ASSLMBs)at room temperature is a severe challenge because of the notorious solid–solid interfacial contact loss and sluggish ion transport.Solid electrolytes are generally studied as two-dimensional(2D)structures with planar interfaces,showing limited interfacial contact and further resulting in unstable Li/electrolyte and cathode/electrolyte interfaces.Herein,three-dimensional(3D)architecturally designed composite solid electrolytes are developed with independently controlled structural factors using 3D printing processing and post-curing treatment.Multiple-type electrolyte films with vertical-aligned micro-pillar(p-3DSE)and spiral(s-3DSE)structures are rationally designed and developed,which can be employed for both Li metal anode and cathode in terms of accelerating the Li+transport within electrodes and reinforcing the interfacial adhesion.The printed p-3DSE delivers robust long-term cycle life of up to 2600 cycles and a high critical current density of 1.92 mA cm^(−2).The optimized electrolyte structure could lead to ASSLMBs with a superior full-cell areal capacity of 2.75 mAh cm^(−2)(LFP)and 3.92 mAh cm^(−2)(NCM811).This unique design provides enhancements for both anode and cathode electrodes,thereby alleviating interfacial degradation induced by dendrite growth and contact loss.The approach in this study opens a new design strategy for advanced composite solid polymer electrolytes in ASSLMBs operating under high rates/capacities and room temperature. 展开更多
关键词 All-solid-state lithium metal batteries Composite solid electrolyte 3D printing Areal capacity Interfacial degradation
下载PDF
Mechanical and Rheological Properties of Bamboo Pulp Fiber Reinforced High Density Polyethylene Composites:Influence of Nano CaCO_(3)Treatment and Manufacturing Process with Different Pressure Ratings
4
作者 Cuicui Wang Xin Wei +3 位作者 Lee MSmith Ge Wang Shuangbao Zhang Haitao Cheng 《Journal of Renewable Materials》 SCIE EI 2022年第7期1829-1844,共16页
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ... In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites. 展开更多
关键词 Nano CaCO_(3) bamboo pulp fiber composites manufacturing process mechanical properties rheological properties
下载PDF
Numerical simulation on trapping efficiency of steady filtration process in diesel particulate filter and its experimental verification 被引量:8
5
作者 张桂菊 鄂加强 +3 位作者 左青松 龚金科 左威 袁文华 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第11期4456-4466,共11页
Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of s... Taking wall-flow diesel particulate filter(DPF) as the research objective and separately assuming its filtering wall to be composed of numerous spherical or cylindrical elements, two different mathematical models of steady filtration for wall-flow diesel particulate filter were developed and verified by experiments as well as numerically solved. Furthermore, the effects of the macroand micro-structural parameters of filtering wall and exhaust-flow characteristic parameters on trapping efficiency were also analyzed and researched. The results show that: 1) The two developed mathematical models are consistent with the prediction of variation of particulate size; the influence of various factors on the steady trapping efficiency is exactly the same. Compared to model 2, model 1 is more suitable for describing the steady filtration process of wall-flow diesel particulate filter; 2)The major influencing factors on steady trapping efficiency of wall-flow diesel particulate filter are the macro-and micro-structural parameters of filtering wall; and the secondary influencing factors are the exhaust-flow characteristic parameters and macro-structural parameters of filter; 3)The steady trapping efficiency will be improved by increasing filter body volume, pore density as well as wall thickness and by decreasing exhaust-flow, but effects will be weakened when particulate size exceeds a certain critical value; 4) The steady trapping efficiency will be significantly improved by increasing exhaust-flow temperature and filtering wall thickness, but effects will be also weakened when particulate size exceeds a certain critical value; 5) The steady trapping efficiency will approximately linearly increase with reducing porosity, micropore aperture and pore width. 展开更多
关键词 wall-flow DIESEL PARTICULATE filter STEADY filtrat
下载PDF
Design and analysis of logarithmic spiral type sprag one-way clutch 被引量:5
6
作者 刘志辉 严宏志 曹煜明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4597-4607,共11页
A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes... A complete mathematical model for logarithmic spiral type sprag one-way clutch design and analysis is given.It assumes that the motion of all clutch components can be expressed by a model of epicyclic gearing.It takes advantage of Hunt-Crossley contact impact theory to calculate the contact forces between sprags and races,and it can be used for optimization of design and comparison with other types of sprag clutches.A good deal of analysis shows that the parameters of the steady windup angle,the steady contact force,the natural frequency and natural cycle of clutch have nothing to do with the initial velocity of outer race,while the parameters of the maximum transient windup angle,the maximum transient impact force and the steady engagement time increase linearly in the mode of engaging operation of clutch.It is also shown that the strut angle has great influence on the dynamic engagement performance of clutch.The parameters of the steady windup angle,the maximum transient windup angle,the steady engaging time,the steady contact force,the maximum transient impact force and the natural cycle of clutch decrease linearly nearly with the inner strut angle,while the natural frequency of the system increases linearly with the inner strut angle. 展开更多
关键词 mathematical model logarithmic spiral one-way clutch hunt-crossley windup angle steady contact force transient impact force
下载PDF
Differentiation and analysis on rock breaking characteristics of TBM disc cutter at different rock temperatures 被引量:5
7
作者 谭青 张桂菊 +1 位作者 夏毅敏 李建芳 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4807-4818,共12页
In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis o... In order to study rock breaking characteristics of tunnel boring machine(TBM) disc cutter at different rock temperatures,thermodynamic rock breaking mathematical model of TBM disc cutter was established on the basis of rock temperature change by using particle flow code theory and the influence law of interaction mechanism between disc cutter and rock was also numerically simulated.Furthermore,by using the linear cutting experiment platform,rock breaking process of TBM disc cutter at different rock temperatures was well verified by the experiments.Finally,rock breaking characteristics of TBM disc cutter were differentiated and analyzed from microscale perspective.The results indicate the follows.1) When rock temperature increases,the mechanical properties of rock such as hardness,and strength,were greatly reduced,simultaneously the microcracks rapidly grow with the cracks number increasing,which leads to rock breaking load decreasing and improves rock breaking efficiency for TBM disc cutter.2) The higher the rock temperature,the lower the rock internal stress.The stress distribution rules coincide with the Buzin Neske stress circle rules: the maximum stress value is below the cutting edge region and then gradually decreases radiant around; stress distribution is symmetrical and the total stress of rock becomes smaller.3) The higher the rock temperature is,the more the numbers of micro,tensile and shear cracks produced are by rock as well as the easier the rock intrusion,along with shear failure mode mainly showing.4) With rock temperature increasing,the resistance intrusive coefficients of rock and intrusion power decrease obviously,so the specific energy consumption that TBM disc cutter achieves leaping broken also decreases subsequently.5) The acoustic emission frequency remarkably increases along with the temperature increasing,which improves the rock breaking efficiency. 展开更多
关键词 tunnel boring maching(TBM) disc cutter rock temperature rock breaking characteristic numerical simulation
下载PDF
Plasma-enabled electrochemical jet micromachining of chemically inert and passivating material 被引量:1
8
作者 Jiajun Lu Shunda Zhan +1 位作者 Bowen Liu Yonghua Zhao 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期215-233,共19页
Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the ... Electrochemical jet machining(EJM)encounters significant challenges in the microstructuring of chemically inert and passivating materials because an oxide layer is easily formed on the material surface,preventing the progress of electrochemical dissolution.This research demonstrates for the first time a jet-electrolytic plasma micromachining(Jet-EPM)method to overcome this problem.Specifically,an electrolytic plasma is intentionally induced at the jet-material contact area by applying a potential high enough to surmount the surface boundary layer(such as a passive film or gas bubble)and enable material removal.Compared to traditional EJM,introducing plasma in the electrochemical jet system leads to considerable differences in machining performance due to the inclusion of plasma reactions.In this work,the implementation of Jet-EPM for fabricating microstructures in the semiconductor material 4H-SiC is demonstrated,and the machining principle and characteristics of Jet-EPM,including critical parameters and process windows,are comprehensively investigated.Theoretical modeling and experiments have elucidated the mechanisms of plasma ignition/evolution and the corresponding material removal,showing the strong potential of Jet-EPM for micromachining chemically resistant materials.The present study considerably augments the range of materials available for processing by the electrochemical jet technique. 展开更多
关键词 electrochemical jet machining electrolytic plasma PASSIVATION oxide film breakdown material removal mechanism
下载PDF
A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion 被引量:1
9
作者 Dawei Wang Huili Han +7 位作者 Bo Sa Kelin Li Jujie Yan Jiazhen Zhang Jianguang Liu Zhengdi He Ning Wang Ming Yan 《Opto-Electronic Advances》 SCIE EI CAS 2022年第10期35-68,共34页
Additive manufacturing(AM), or 3D printing, is an emerging technology that “adds” materials up and constructs products through a layer-by-layer procedure. Laser powder bed fusion(LPBF) is a powder-bed-based AM techn... Additive manufacturing(AM), or 3D printing, is an emerging technology that “adds” materials up and constructs products through a layer-by-layer procedure. Laser powder bed fusion(LPBF) is a powder-bed-based AM technology that can fabricate a large variety of metallic materials with excellent quality and accuracy. However, various defects such as porosity,cracks, and incursions can be generated during the printing process. As the most universal and a near-inevitable defect,porosity plays a substantial role in determining the mechanical performance of as-printed products. This work presents a comprehensive review of literatures that focused on the porosity in LPBF printed metals. The formation mechanisms,evaluation methods, effects on mechanical performance with corresponding models, and controlling methods of porosity have been illustrated and discussed in-depth. Achievements in four representative metals, namely Ti-6Al-4V, 316L, Inconel 718, and Al Si10Mg, have been critically reviewed with a statistical analysis on the correlation between porosity fraction and tensile properties. Ductility has been determined as the most sensitive property to porosity among several key tensile properties. This review also provides potential directions and opportunities to address the current porosity-related challenges. 展开更多
关键词 additive manufacturing laser powder bed fusion selective laser melting POROSITY DEFECTS mechanical performance metallic materials PERSPECTIVES
下载PDF
Contact pressure distribution and support angle optimization of kiln tyre 被引量:1
10
作者 肖友刚 潘迪夫 雷先明 《Journal of Central South University of Technology》 2006年第3期246-250,共5页
According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between ty... According to the shearing force character and the deformation coordination condition of shell at the station of supports, the mathematical models to calculate contact angle and contact pressure distribution between tyre and shell were set up, the formulae of bending moment and bending stress of tyre were obtained. Taking the maximum of tyre fatigue life as the optimal objective, the optimization model of tyre support angle was built. The computational results show that when tyre support angle is 30°, tyre life is far less than that when tyre support angle is optimal, which is 35.6°, and it is unsuitable to stipulate tyre support angle to be 30° in traditional design. The larger the load, the less the nominal stress amplitude increment of tyre, the more favorable the tyre fatigue life when tyre support angle is optimal. 展开更多
关键词 轮胎 接触压力 承载面角 优化设计 压力分布
下载PDF
Tailoring mechanical properties of PμSL 3D-printed structures via size effect 被引量:1
11
作者 Wenqiang Zhang Haitao Ye +5 位作者 Xiaobin Feng Wenzhao Zhou Ke Cao Maoyuan Li Sufeng Fan Yang Lu 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期261-268,共8页
Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables th... Projection micro stereolithography(PμSL)has emerged as a powerful three-dimensional(3D)printing technique for manufacturing polymer structures with micron-scale high resolution at high printing speed,which enables the production of customized 3D microlattices with feature sizes down to several microns.However,the mechanical properties of as-printed polymers were not systemically studied at the relevant length scales,especially when the feature sizes step into micron/sub-micron level,limiting its reliable performance prediction in micro/nanolattice and other metamaterial applications.In this work,we demonstrate that PμSL-printed microfibers could become stronger and significantly more ductile with reduced size ranging from 20μm to 60μm,showing an obvious size-dependent mechanical behavior,in which the size decreases to 20μm with a fracture strain up to~100%and fracture strength up to~100 MPa.Such size effect enables the tailoring of the material strength and stiffness of PμSL-printed microlattices over a broad range,allowing to fabricate the microlattice metamaterials with desired/tunable mechanical properties for various structural and functional applications. 展开更多
关键词 3D printing projection micro-stereolithography(PμSL) size effect MICROFIBER mechanical properties microlattice metamaterial
下载PDF
Importance and Role of Biodiversity and Tropical Forests in the Cultural, Socio-Economic and Religious Life of African Black People: Case of Benin 被引量:1
12
作者 Adjovi Edmond Codjo Amadji Togbe Armel Olodo Emmanuel 《Journal of Environmental Science and Engineering(B)》 2017年第6期312-322,共11页
关键词 生物多样性 经济生活 热带森林 社会文化 非洲 宗教 案例 传统医药
下载PDF
Polishing and planarization of single crystal diamonds: state-of-the-art and perspectives 被引量:1
13
作者 Hu Luo Khan Muhammad Ajmal +2 位作者 Wang Liu Kazuya Yamamura Hui Deng 《International Journal of Extreme Manufacturing》 EI 2021年第2期45-87,共43页
Diamond is a promising material for the modern industry. It is widely used in different applications, such as cutting tools, optical windows, heat dissipation, and semiconductors.However, these application areas requi... Diamond is a promising material for the modern industry. It is widely used in different applications, such as cutting tools, optical windows, heat dissipation, and semiconductors.However, these application areas require exceptionally flattened and polished diamond surfaces.Unfortunately, due to the extreme hardness and chemical inertness of diamond, the polishing of diamond is challenging. Since the 1920s, various conventional and modern mechanical,chemical, and thermal polishing techniques have been proposed and developed for finishing diamond surfaces. Therefore, to impart proper guidance on selecting a good polishing technique for production practice, this paper presents an in-depth and informative literature survey of the current research and engineering developments regarding diamond polishing. At first, a brief review of the general developments and basic material removal principles is discussed. This review concludes with a detailed analysis of each techniques' polishing performance and critical challenges, and a discussion of the new insights and future applications of diamond polishing. 展开更多
关键词 diamond polishing material removal anisotropy ultra-smooth surface chemical reaction surface quality
下载PDF
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
14
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect Fast-charging lithiumion batteries
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
15
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
关键词 MLP神经网络 电力负荷预测 SOM 自组织映射神经网络 短期负荷预测 神经网络训练 离散控制 多层感知器
下载PDF
Mixed Cations Enabled Combined Bulk and Interfacial Passivation for Efficient and Stable Perovskite Solar Cells 被引量:1
16
作者 Pengfei Wu Shirong Wang +4 位作者 Jin Hyuck Heo Hongli Liu Xihan Chen Xianggao Li Fei Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期116-127,共12页
Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite f... Here,we report a mixed GAI and MAI(MGM)treatment method by forming a 2D alternating-cation-interlayer(ACI)phase(n=2)perovskite layer on the 3D perovskite,modulating the bulk and interfacial defects in the perovskite films simultaneously,leading to the suppressed nonradiative recombination,longer lifetime,higher mobility,and reduced trap density.Consequently,the devices’performance is enhanced to 24.5%and 18.7%for 0.12 and 64 cm^(2),respectively.In addition,the MGM treatment can be applied to a wide range of perovskite compositions,including MA-,FA-,MAFA-,and CsFAMA-based lead halide perovskites,making it a general method for preparing efficient perovskite solar cells.Without encapsulation,the treated devices show improved stabilities. 展开更多
关键词 Alternating-cation-interlayer Bulk defects Interfacial passivation Perovskite solar cells
下载PDF
Preliminary study on theory and experiment of photo-mechanics manufacturing and detecting technologies based on laser thermal stress
17
作者 Kong Dejun Zhang Yongkang +3 位作者 Zhu Hailin Lu Jinzhong Feng Aixin Wang Wei 《Engineering Sciences》 EI 2008年第3期52-56,共5页
Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet ... Mechanics effect of laser thermal stress is a new manufacturing technology, which uses thermal stress by high power laser acted on the surface of metal material to produce stress field. The technologies such as sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD (X-ray diffraction) are formed based on mechanics effects of laser thermal stress. The mechanisms of sheet metal formation by laser thermal stress, measurement by laser scratching and measurement by XRD are analyzed, and the theory of photo-mechanics manufacturing and detecting technologies based on laser thermal stress is originally put forward, whose experiment is primitively researched, and the manufacturing theory by mechanics effects of laser thermal stress is established. 展开更多
关键词 激光测量 检测技术 力学实验 热应力 X射线衍射分析 生产 金属板材 制造技术
下载PDF
Analysis of Force Transmission by a Knee Loading Device from Skin and Soft Tissue to Knee Joint Elements
18
作者 Samson Rayi Hiroki Yokata Sohel Anwar 《Journal of Biomedical Science and Engineering》 2019年第6期333-346,共14页
Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loa... Dynamic loading to a knee joint is considered to be an effective modality for enhancing the healing of long bones and cartilage that are subject to ailments like fractures, osteoarthritis, etc. We developed a knee loading device and tested it for force application. The device applies forces on the skin, whereas force transmitted to the knee joint elements is directly responsible for promoting the healing of bone and cartilage. However, it is not well understood how loads on the skin are transmitted to the cartilage, ligaments, and bone. Based on a CAD model of a human knee joint, we conducted a finite element analysis (FEA) for force transmission from the skin and soft tissue to a knee joint. In this study, 3D models of human knee joint elements were assembled in an FEA software package (SIMSOLID). A wide range of forces was applied to the skin with different thickness in order to obtain approximate force values transmitted from the skin to the joint elements. The maximum Von Mises stress and displacement distributions were estimated for different components of the knee joint. The results demonstrate that the high load bearing areas were located on the posterior portion of the cartilage. This prediction can be used to improve the design of the knee loading device. 展开更多
关键词 KNEE LOADING MODALITY LOADING Force Bone HEALING KNEE Rehabilitation Finite Element ANALYSIS
下载PDF
A Janus separator towards dendrite-free and stable zinc anodes for long-duration aqueous zinc ion batteries
19
作者 Yan Sun Qinping Jian +4 位作者 Tianshuai Wang Bin Liu Yuhan Wan Jing Sun Tianshou Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期583-592,I0013,共11页
Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with th... Critical issues of Zn anodes including undesirable dendrites formation and parasitic reactions severely limit the reversibility and cyclability of Zn anodes.To address these issues,a functional Janus separator with the structure of a mechanically strong sulfonated poly(arylene ether sulfone)(SPAES)dense layer composited on a porous glass fiber(GF)substrate is designed.The SPAES dense layer that faces the Zn anode containing abundant sulfonic acid groups effectively promotes the desolvation process of hydrated Zn ions,guides uniform Zn ion transfer,and blocks anions and water,contributing to dendrite-free and highly reversible Zn plating/stripping cycles,while the porous GF substrate retains high electrolyte uptake.As a result,the Zn symmetric cell with the Janus separator demonstrates an ultralong cycling lifespan of over 2000 h at the areal capacity of 1 m A h cm^(-2),which is 23-fold superior to that with a pristine glass fiber separator(<90 h).More impressively,the as-prepared Janus separator enables outstanding rate performance and excellent cycling stability of full Zn ion batteries with diverse cathode materials.For instance,when paired with the V_2O_(5)cathode,the full battery with a Janus separator attains an ultrahigh initial specific capacity of 416.3 m A h g^(-1)and capacity retention of 60%over 450 cycles at 1 A g^(-1),exceeding that with a glass fiber separator.Hence,this work provides a facile yet effective approach to mitigating the dendrites formation and ameliorating the parasitic reactions of Zn metal anodes for high-performance Zn ion batteries. 展开更多
关键词 Janus separator Sulfonated poly(arylene ether sulfone) Dendrite-free Side reaction suppression Aqueous zinc-ion batteries
下载PDF
Failure mode change and material damage with varied machining speeds:a review
20
作者 Jianqiu Zhang Binbin He Bi Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第2期36-60,共25页
High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not ... High-speed machining(HSM) has been studied for several decades and has potential application in various industries, including the automobile and aerospace industries. However,the underlying mechanisms of HSM have not been formally reviewed thus far. This article focuses on the solid mechanics framework of adiabatic shear band(ASB) onset and material metallurgical microstructural evolutions in HSM. The ASB onset is described using partial differential systems. Several factors in HSM were considered in the systems, and the ASB onset conditions were obtained by solving these systems or applying the perturbation method to the systems. With increasing machining speed, an ASB can be depressed and further eliminated by shock pressure. The damage observed in HSM exhibits common features. Equiaxed fine grains produced by dynamic recrystallization widely cause damage to ductile materials, and amorphization is the common microstructural evolution in brittle materials. Based on previous studies, potential mechanisms for the phenomena in HSM are proposed. These include the thickness variation of the white layer of ductile materials. These proposed mechanisms would be beneficial to deeply understanding the various phenomena in HSM. 展开更多
关键词 high-speed machining adiabatic shear band subsurface damage dynamic recrystallization
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部