A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intr...A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection.展开更多
基金Supported by the National Natural Science Foundation of China (60573047), Natural Science Foundation of the Science and Technology Committee of Chongqing (8503) and the Applying Basic Research of the Education Committee of Chongqing (KJ060804)
文摘A new intrusion detection method based on learning vector quantization (LVQ) with low overhead and high efficiency is presented. The computer vision system employs LVQ neural networks as classifier to recognize intrusion. The recognition process includes three stages: (1) feature selection and data normalization processing;(2) learning the training data selected from the feature data set; (3) identifying the intrusion and generating the result report of machine condition classification. Experimental results show that the proposed method is promising in terms of detection accuracy, computational expense and implementation for intrusion detection.