期刊文献+
共找到2,462篇文章
< 1 2 124 >
每页显示 20 50 100
Does MgSO_(4) protect the preterm brain?Dissecting its role in the pathophysiology of hypoxic ischemic encephalopathy
1
作者 Robert Galinsky Laura Bennet Alistair J.Gunn 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1861-1862,共2页
Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts ... Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts on the individuals,their families,and public health sectors and welfare systems that last a lifetime.The cost of disability associated with preterm brain injury continues to rise.Prevention of this injury,and disability,would significantly reduce this socioeconomic burden. 展开更多
关键词 ENCEPHALOPATHY mortality HYPOXIC
下载PDF
The miR-9-5p/CXCL11 pathway is a key target of hydrogen sulfide-mediated inhibition of neuroinflammation in hypoxic ischemic brain injury 被引量:1
2
作者 Yijing Zhao Tong Li +6 位作者 Zige Jiang Chengcheng Gai Shuwen Yu Danqing Xin Tingting Li Dexiang Liu Zhen Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1084-1091,共8页
We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation r... We previously showed that hydrogen sulfide(H2S)has a neuroprotective effect in the context of hypoxic ischemic brain injury in neonatal mice.However,the precise mechanism underlying the role of H2S in this situation remains unclear.In this study,we used a neonatal mouse model of hypoxic ischemic brain injury and a lipopolysaccharide-stimulated BV2 cell model and found that treatment with L-cysteine,a H2S precursor,attenuated the cerebral infarction and cerebral atrophy induced by hypoxia and ischemia and increased the expression of miR-9-5p and cystathionineβsynthase(a major H2S synthetase in the brain)in the prefrontal cortex.We also found that an miR-9-5p inhibitor blocked the expression of cystathionineβsynthase in the prefrontal cortex in mice with brain injury caused by hypoxia and ischemia.Furthermore,miR-9-5p overexpression increased cystathionine-β-synthase and H2S expression in the injured prefrontal cortex of mice with hypoxic ischemic brain injury.L-cysteine decreased the expression of CXCL11,an miR-9-5p target gene,in the prefrontal cortex of the mouse model and in lipopolysaccharide-stimulated BV-2 cells and increased the levels of proinflammatory cytokines BNIP3,FSTL1,SOCS2 and SOCS5,while treatment with an miR-9-5p inhibitor reversed these changes.These findings suggest that H2S can reduce neuroinflammation in a neonatal mouse model of hypoxic ischemic brain injury through regulating the miR-9-5p/CXCL11 axis and restoringβ-synthase expression,thereby playing a role in reducing neuroinflammation in hypoxic ischemic brain injury. 展开更多
关键词 chemokine(C-X-C motif)ligand 11 cystathionineβsynthase H2S hypoxic ischemic brain injury inflammation L-CYSTEINE lipopolysaccharide microglia miR-9-5p neuroprotection
下载PDF
On the functions of astrocyte-mediated neuronal slow inward currents
3
作者 Balázs Pál 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2602-2612,共11页
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events a... Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extra synaptic N-met hyl-D-aspartate receptors with the contribution of astrocytes.These events are significantly slower than the excitatory postsynaptic currents.Parameters of slow inward currents are determined by seve ral factors including the mechanisms of astrocytic activation and glutamate release,as well as the diffusion pathways from the release site towards the extra synaptic recepto rs.Astrocytes are stimulated by neuronal network activity,which in turn excite neurons,forming an astrocyte-neuron feedback loop.Mostly as a consequence of brain edema,astrocytic swelling can also induce slow inward currents under pathological conditions.There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level.These events often occur in synchro ny on neurons located in the same astrocytic domain.Besides synchronization of neuronal excitability,slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity.In addition,slow inward currents are also subject to non-synaptic plasticity triggered by long-la sting stimulation of the excitatory inputs.Of note,there might be important regionspecific differences in the roles and actions triggering slow inward currents.In greater networks,the pathophysiological roles of slow inward currents can be better understood than physiological ones.Slow inward currents are identified in the pathophysiological background of autism,as slow inward currents drive early hypersynchrony of the neural networks.Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes.These events are related to epilepsy,but also found in Alzheimer's disease,Parkinson's disease,and stroke,leading to the decline of cognitive functions.Events with features overlapping with slow inward currents(excitatory,N-methyl-Daspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke,traumatic brain injury,or epilepsy.One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation.However,to state this,more experimental evidence from greater neuronal networks or the level of the individual is needed.In this review,I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it. 展开更多
关键词 ASTROCYTE cortical spreading depolarization gliotransmission GLUTAMATE neural synchronization NMDA receptor paroxysmal depolarizational shift slow inward current
下载PDF
Mechanism of Cu entry into the brain:many unanswered questions
4
作者 Shubhrajit Roy Svetlana Lutsenko 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2421-2429,共9页
Brain tissue requires high amounts of copper(Cu)for its key physiological processes,such as energy production,neurotransmitter synthesis,maturation of neuropeptides,myelination,synaptic plasticity,and radical scavengi... Brain tissue requires high amounts of copper(Cu)for its key physiological processes,such as energy production,neurotransmitter synthesis,maturation of neuropeptides,myelination,synaptic plasticity,and radical scavenging.The requirements for Cu in the brain vary depending on specific brain regions,cell types,organism age,and nutritional status.Cu imbalances cause or contribute to several life-threatening neurologic disorders including Menkes disease,Wilson disease,Alzheimer’s disease,Parkinson’s disease,and others.Despite the well-established role of Cu homeostasis in brain development and function,the mechanisms that govern Cu delivery to the brain are not well defined.This review summarizes available information on Cu transfer through the brain barriers and discusses issues that require further research. 展开更多
关键词 ATOX1 ATP7A ATP7B blood-brain barrier BRAIN choroid plexus COPPER SLC31A1
下载PDF
Dysfunction of synaptic endocytic trafficking in Parkinson's disease
5
作者 Xin Yi Ng Mian Cao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2649-2660,共12页
Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of t... Parkinson's disease is characterized by the selective degeneration of dopamine neurons in the nigrostriatal pathway and dopamine deficiency in the striatum.The precise reasons behind the specific degeneration of these dopamine neurons remain largely elusive.Genetic investigations have identified over 20 causative PARK genes and 90 genomic risk loci associated with both familial and sporadic Parkinson's disease.Notably,several of these genes are linked to the synaptic vesicle recycling process,particularly the clathrinmediated endocytosis pathway.This suggests that impaired synaptic vesicle recycling might represent an early feature of Parkinson's disease,followed by axonal degeneration and the eventual loss of dopamine cell bodies in the midbrain via a"dying back"mechanism.Recently,several new animal and cellular models with Parkinson's disease-linked mutations affecting the endocytic pathway have been created and extensively characterized.These models faithfully recapitulate certain Parkinson's disease-like features at the animal,circuit,and cellular levels,and exhibit defects in synaptic membrane trafficking,further supporting the findings from human genetics and clinical studies.In this review,we will first summarize the cellular and molecular findings from the models of two Parkinson's disease-linked clathrin uncoating proteins:auxilin(DNAJC6/PARK19)and synaptojanin 1(SYNJ1/PARK20).The mouse models carrying these two PARK gene mutations phenocopy each other with specific dopamine terminal pathology and display a potent synergistic effect.Subsequently,we will delve into the involvement of several clathrin-mediated endocytosis-related proteins(GAK,endophilin A1,SAC2/INPP5 F,synaptotagmin-11),identified as Parkinson's disease risk factors through genome-wide association studies,in Parkinson's disease pathogenesis.We will also explore the direct or indirect roles of some common Parkinson's disease-linked proteins(alpha-synuclein(PARK1/4),Parkin(PARK2),and LRRK2(PARK8))in synaptic endocytic trafficking.Additionally,we will discuss the emerging novel functions of these endocytic proteins in downstream membrane traffic pathways,particularly autophagy.Given that synaptic dysfunction is considered as an early event in Parkinson's disease,a deeper understanding of the cellular mechanisms underlying synaptic vesicle endocytic trafficking may unveil novel to rgets for early diagnosis and the development of interventional therapies for Parkinson's disease.Future research should aim to elucidate why generalized synaptic endocytic dysfunction leads to the selective degeneration of nigrostriatal dopamine neurons in Parkinson's disease. 展开更多
关键词 AUTOPHAGY auxilin/PARK19 clathrin-mediated endocytosis dopamine neurons NEURODEGENERATION nigrostriatal pathway Parkinson's disease synaptic vesicle recycling synaptojanin1/PARK20
下载PDF
The concept of gene therapy for glaucoma:the dream that has not come true yet
6
作者 Robert Sulak Xiaonan Liu Adrian Smedowski 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期92-99,共8页
Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene dise... Gene therapies,despite of being a relatively new therapeutic approach,have a potential to become an important alternative to current treatment strategies in glaucoma.Since glaucoma is not considered a single gene disease,the identified goals of gene therapy would be rather to provide neuroprotection of retinal ganglion cells,especially,in intraocular-pressure-independent manner.The most commonly reported type of vector for gene delivery in glaucoma studies is adeno-associated virus serotype 2 that has a high tro pism to retinal ganglion cells,res ulting in long-term expression and low immunogenic profile.The gene thera py studies recruit inducible and genetic animal models of optic neuropathy,like DBA/2J mice model of high-tension glaucoma and the optic nerve crush-model.Reported gene therapy-based neuroprotection of retinal ganglion cells is targeting specific genes translating to growth factors(i.e.,brain derived neurotrophic factor,and its receptor TrkB),regulation of apoptosis and neurodegeneration(i.e.,Bcl-xl,Xiap,FAS system,nicotinamide mononucleotide adenylyl transferase 2,Digit3 and Sarm1),immunomodulation(i.e.,Crry,C3 complement),modulation of neuroinflammation(i.e.,e rythropoietin),reduction of excitotoxicity(i.e.,Com KIlα)and transcription regulation(i.e.,Max,Nrf2).On the other hand,some of gene therapy studies focus on lowering intra ocular pressure,by impacting genes involved in both,decreasing aqueous humor production(i.e.,aquaporin 1),and increasing outflow facility(i.e.,COX2,prostaglandin F2a receptor,RhoA/RhoA kinase signaling pathway,MMP1,Myocilin).The goal of this review is to summarize the current stateof-art and the direction of development of gene therapy strategies for glaucomatous neuropathy. 展开更多
关键词 adeno-associated virus gene editing gene therapy GLAUCOMA IOP lowering IOP-independent mechanisms neuroprotection optic nerve optic neuropathy retinal ganglion cells
下载PDF
Vanillylacetone attenuates cadmium chloride-induced hippocampal damage and memory loss through upregulation of nuclear factor erythroid 2-related factor 2 gene and protein expression
7
作者 Fahaid H.A.L-Hashem Salah O.Bashir +4 位作者 Amal F.Dawood Moutasem S.Aboonq Ismaeel Bin-Jaliah Abdulaiziz M.Al-Garni Mohamed D.Morsy 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2750-2759,共10页
Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairmen... Memory loss and dementia are major public health concerns with a substantial economic burden.Oxidative stress has been shown to play a crucial role in the pathophysiology of hippocampal damage-induced memory impairment.To investigate whether the antioxidant and anti-inflammatory compound vanillyla cetone(zingerone) can protect against hippocampal damage and memory loss induced by cadmium chloride(CdCl_(2)) administration in rats,we explo red the potential involvement of the nuclear factor erythroid 2-related factor 2(Nrf2) signaling pathway,which is known to modulate oxidative stress and inflammation.Sixty healt hy male Wistar rats were divided into five groups:vehicle-treated(control),vanillylacetone,CdCl_(2),vanillylacetone+ CdCl_(2),vanillylacetone+ CdCl_(2)+ brusatol(a selective pharmacological N rf2inhibitor) groups.Vanillylacetone effectively attenuated CdCl_(2)-induced damage in the dental gyrus of the hippocampus and improved the memory function assessed by the Morris Water Maze test.Additionally,vanillylacetone markedly decreased the hippocampal tissue levels of inflammatory biomarkers(interleukin-6,tumor necrosis factor-α,intracellular cell adhesive molecules) and apoptosis biomarkers(Bax and cleaved caspase-3).The control and CdCl_(2)-treated groups treated with va nillylacetone showed reduced generation of reactive oxygen species,decreased malondialdehyde levels,and increased superoxide dismutase and glutathione activities,along with significant elevation of nuclear Nrf2 mRNA and protein expression in hippocampal tissue.All the protective effects of vanillylacetone we re substantially blocked by the co-administration of brusatol(a selective N rf2 inhibitor).Va nillylacetone mitigated hippocampal damage and memory loss induced by CdCl_(2),at least in part, by activating the nuclear transcription factor Nrf2.Additionally,vanillylacetone exerted its potent antioxidant and antiinflammatory actions. 展开更多
关键词 HIPPOCAMPUS NEUROPROTECTIVE Nrf2 gene oxidative stress vanillylacetone
下载PDF
TonEBP expression is essential in the IL-1β–induced migration and invasion of human A549 lung cancer cells
8
作者 HEE JU SONG TAEHEE KIM +2 位作者 HAN NA CHOI SOO JIN KIM SANG DO LEE 《Oncology Research》 SCIE 2024年第1期151-161,共11页
Lung cancer has the highest mortality rate among all cancers,in part because it readily metastasizes.The tumor microenvironment,comprising blood vessels,fibroblasts,immune cells,and macrophages[including tumor-associa... Lung cancer has the highest mortality rate among all cancers,in part because it readily metastasizes.The tumor microenvironment,comprising blood vessels,fibroblasts,immune cells,and macrophages[including tumor-associated macrophages(TAMs)],is closely related to cancer cell growth,migration,and invasion.TAMs secrete several cytokines,including interleukin(IL)-1β,which participate in cancer migration and invasion.p21-activated kinase 1(PAK1),an important signaling molecule,induces cell migration and invasion in several carcinomas.Tonicityresponsive enhancer-binding protein(TonEBP)is also known to participate in cancer cell growth,migration,and invasion.However,the mechanisms by which it increases lung cancer migration remain unclear.Therefore,in this study,we aimed to elucidate the mechanisms by which IL-1βand TonEBP affect lung cancer cell migration and invasion.We found that A549 cocultured-MΦ-secreted IL-1βinduced A549 cell migration and invasion via the PAK1 pathway.TonEBP deficiency reduced A549 cell migration and invasion and increased responsiveness to IL-1β–induced migration and invasion.PAK1 phosphorylation,which was promoted by IL-1β,was reduced when TonEBP was depleted.These results suggest that TonEBP plays an important role in IL-1βinduction and invasiveness of A549 cells via the PAK1 pathway.These findings could be valuable in identifying potential targets for lung cancer treatment. 展开更多
关键词 Lung cancer TONEBP Tumor microenvironment Tumor-associated macrophage IL-1Β
下载PDF
Impact of tibial transverse transport in tissue regeneration and wound healing with perspective on diabetic foot ulcers
9
作者 Sulagna Mukherjee Seung-Soon Im 《World Journal of Diabetes》 SCIE 2024年第5期810-813,共4页
In this editorial,we comment on an article by Liao et al published in the current issue of the World Journal of Diabetes.We focus on the clinical significance of tibial transverse transport(TTT)as an effective treatme... In this editorial,we comment on an article by Liao et al published in the current issue of the World Journal of Diabetes.We focus on the clinical significance of tibial transverse transport(TTT)as an effective treatment for patients with diabetic foot ulcers(DFU).TTT has been associated with tissue regeneration,improved blood circulation,reduced amputation rates,and increased expression of early angiogenic factors.Mechanistically,TTT can influence macrophage polarization and growth factor upregulation.Despite this potential,the limitations and conflicting results of existing studies justify the need for further research into its optimal application and development.These clinical implications highlight the efficacy of TTT in recalcitrant DFU and provide lasting stimuli for tissue re-generation,and blood vessel and bone marrow improvement.Immunomodu-lation via systemic responses contributes to its therapeutic potential.Future studies should investigate the underlying molecular mechanisms to enhance our understanding and the efficacy of TTT.This manuscript emphasizes the potential of TTT in limb preservation and diabetic wound healing and suggests avenues for preventive measures against limb amputation in diabetes and peripheral artery disease.Here,we highlight the clinical significance of the TTT and its importance in healing DFU to promote the use of this technique in tissue regeneration. 展开更多
关键词 Diabetes foot ulcer Tibial transverse transport Foot surgery Wound healing Tissue regeneration
下载PDF
New pharmacological tools:the use of diterpenes to promote adult hippocampal neurogenesis
10
作者 Ricardo Gomez-Oliva Pedro Nunez-Abades Carmen Castro 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1629-1630,共2页
Tissue regeneration maintains homeostasis and preserves the functional features of each tissue.However,not all tissues show a strong repairing capacity.This is the case of the central nervous system.It is now well est... Tissue regeneration maintains homeostasis and preserves the functional features of each tissue.However,not all tissues show a strong repairing capacity.This is the case of the central nervous system.It is now well established that the generation of new functional neurons from stem cells in the adult brain occurs in specific regions of the brain of different species such as rodents,birds,primates,and humans(Eriksson et al.,1998). 展开更多
关键词 capacity MAINTAIN preserve
下载PDF
Protective effect of camellia oil on H_(2)O_(2)-induced oxidative stress injury in H9C2 cardiomyocytes of rats
11
作者 YAN Qing GUO Zhen +3 位作者 SUN Sai-nan LI Jing TAN Ji-yong LI Jing 《Journal of Hainan Medical University》 CAS 2024年第1期1-7,共7页
Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocyte... Objective: To explore the protective effect of camellia oil against H2O2-induced oxidative stress injury in rat H9C2 cardiomyocytes. Methods: CCK8 method was used to detect the cell survival rate of H9C2 cardiomyocytes treated with different concentrations of H2O2. Normal cultured cells were used as the blank control group, and the cells were treated with 200 μmol/L H2O2 for 24 h. An oxidative stress injury model was constructed as the model group. The cells were pretreated with 1%, 0.1% and 0.01% camellia oil for 24 h, and then H2O2 was added for 24 h as the experimental group. The β-galactosidase senescence staining assay, mitochondrial membrane potential assay, EdU cell proliferation staining assay and scratch assay were used to observe the changes of cell senescence, mitochondrial membrane potential, proliferation, apoptosis and migration in each group. The superoxide dismutase (SOD) activity, lactate dehydrogenase (LDH) activity, and malondialdehyde (MDA) content of the cells in each group were detected by using the kit. Results: The cell viability of H9C2 cardiomyocytes treated with different concentrations of H2O2 was inhibited and positively correlated with the concentration of H2O2 (P<0.01). Compared with the blank control group, the positive rate of cell senescence, MDA content and LDH activity increased in the H2O2 model group (P<0.01);mitochondrial membrane potential, cellular value-added rate, migration rate and SOD activity decreased (P<0.01). Compared with the H2O2 model group, the positive rate of cellular senescence (P<0.01 or P<0.05), MDA content and LDH activity decreased (P< 0.01 or P<0.05);mitochondrial membrane potential increased, cell proliferation rate and migration rate increased (P<0.01 or P<0.05) in the experimental group. Conclusion: Camellia oil can significantly inhibit oxidative stress injury in H9C2 cells and exert cardiomyocyte protective effects. 展开更多
关键词 Camellia oil H_(2)O_(2) H9C2 Oxidative stress Protective
下载PDF
Changes in structural plasticity of hippocampal neurons in an animal model of multiple sclerosis
12
作者 Poornima D.E.Weerasinghe-Mudiyanselage Sohi Kang +4 位作者 Joong-Sun Kim Sung-Ho Kim Hongbing Wang Taekyun Shin Changjong Moon 《Zoological Research》 SCIE CSCD 2024年第2期398-414,共17页
Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking it... Structural plasticity is critical for the functional diversity of neurons in the brain.Experimental autoimmune encephalomyelitis(EAE)is the most commonly used model for multiple sclerosis(MS),successfully mimicking its key pathological features(inflammation,demyelination,axonal loss,and gliosis)and clinical symptoms(motor and non-motordysfunctions).Recentstudieshave demonstrated the importance of synaptic plasticity in EAE pathogenesis.In the present study,we investigated the features of behavioral alteration and hippocampal structural plasticity in EAE-affected mice in the early phase(11 days post-immunization,DPI)and chronic phase(28DPI).EAE-affected mice exhibited hippocampus-related behavioral dysfunction in the open field test during both early and chronic phases.Dendritic complexity was largely affected in the cornu ammonis 1(CA1)and CA3 apical and dentate gyrus(DG)subregions of the hippocampus during the chronic phase,while this effect was only noted in the CA1 apical subregion in the early phase.Moreover,dendritic spine density was reduced in the hippocampal CA1 and CA3 apical/basal and DG subregions in the early phase of EAE,but only reduced in the DG subregion during the chronic phase.Furthermore,mRNA levels of proinflammatory cytokines(Il1β,Tnfα,and Ifnγ)and glial cell markers(Gfap and Cd68)were significantly increased,whereas the expression of activity-regulated cytoskeletonassociated protein(ARC)was reduced during the chronic phase.Similarly,exposure to the aforementioned cytokines in primary cultures of hippocampal neurons reduced dendritic complexity and ARC expression.Primary cultures of hippocampal neurons also showed significantly reduced extracellular signal-regulated kinase(ERK)phosphorylation upon treatment with proinflammatory cytokines.Collectively,these results suggest that autoimmune neuroinflammation alters structural plasticity in the hippocampus,possibly through the ERK-ARC pathway,indicating that this alteration may be associated with hippocampal dysfunctions in EAE. 展开更多
关键词 Activity-regulated cytoskeleton-associated protein Anxiety-like behavior Experimental autoimmune encephalomyelitis Hippocampal dysfunction NEUROINFLAMMATION
下载PDF
Melatonin improves synapse development by PI3K/Akt signaling in a mouse model of autism spectrum disorder
13
作者 Luyi Wang Man Xu +8 位作者 Yan Wang Feifei Wang Jing Deng Xiaoya Wang Yu Zhao Ailing Liao Feng Yang Shali Wang Yingbo Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1618-1624,共7页
Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrate... Autism spectrum disorders are a group of neurodevelopmental disorders involving more than 1100 genes,including Ctnnd2 as a candidate gene.Ctnnd2knockout mice,serving as an animal model of autis m,have been demonstrated to exhibit decreased density of dendritic spines.The role of melatonin,as a neuro hormone capable of effectively alleviating social interaction deficits and regulating the development of dendritic spines,in Ctnnd2 deletion-induced nerve injury remains unclea r.In the present study,we discove red that the deletion of exon 2 of the Ctnnd2 gene was linked to social interaction deficits,spine loss,impaired inhibitory neurons,and suppressed phosphatidylinositol-3-kinase(PI3K)/protein kinase B(Akt) signal pathway in the prefrontal cortex.Our findings demonstrated that the long-term oral administration of melatonin for 28 days effectively alleviated the aforementioned abnormalities in Ctnnd2 gene-knockout mice.Furthermore,the administration of melatonin in the prefro ntal cortex was found to improve synaptic function and activate the PI3K/Akt signal pathway in this region.The pharmacological blockade of the PI3K/Akt signal pathway with a PI3K/Akt inhibitor,wo rtmannin,and melatonin receptor antagonists,luzindole and 4-phenyl-2-propionamidotetralin,prevented the melatonin-induced enhancement of GABAergic synaptic function.These findings suggest that melatonin treatment can ameliorate GABAe rgic synaptic function by activating the PI3K/Akt signal pathway,which may contribute to the improvement of dendritic spine abnormalities in autism spectrum disorders. 展开更多
关键词 AUTISM Ctnnd2 deletion GABAergic neurons MELATONIN PI3K/Akt signal pathway prefrontal cortex social behavior spine density synaptic-associated proteins
下载PDF
K^(+) channel-mediated retarded maturation of interneurons and its role in neurodevelopmental disorders
14
作者 Kaizhen Li Daria Savitska Olga Garaschuk 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1403-1404,共2页
De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding... De novo mutations in genes encoding K^(+)channels are implicated in many severe neurodevelopmental disorders.Specifically,mutations in KCNA2,encoding the Shaker-type voltage-gated K^(+)channel Kv1.2,and KCNJ2,encoding the inwardly rectifying K^(+)channel Kir2.1,associate with focal and generalized epilepsies,brain atrophy,autism,ataxia and hereditary spastic paraplegia(Syrbe et al.,2015;Masnada et al.,2017;Cheng et al.,2021). 展开更多
关键词 DISORDERS ATROPHY
下载PDF
Expansion of human umbilical cord derived mesenchymal stem cells in regenerative medicine
15
作者 Shafiqa Naeem Rajput Bushra Kiran Naeem +2 位作者 Anwar Ali Asmat Salim Irfan Khan 《World Journal of Stem Cells》 SCIE 2024年第4期410-433,共24页
BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the... BACKGROUND Stem cells are undifferentiated cells that possess the potential for self-renewal with the capacity to differentiate into multiple lineages.In humans,their limited numbers pose a challenge in fulfilling the necessary demands for the regeneration and repair of damaged tissues or organs.Studies suggested that mesenchymal stem cells(MSCs),necessary for repair and regeneration via transplantation,require doses ranging from 10 to 400 million cells.Furthermore,the limited expansion of MSCs restricts their therapeutic application.AIM To optimize a novel protocol to achieve qualitative and quantitative expansion of MSCs to reach the targeted number of cells for cellular transplantation and minimize the limitations in stem cell therapy protocols.METHODS Human umbilical cord(hUC)tissue derived MSCs were obtained and re-cultured.These cultured cells were subjected to the following evaluation pro-cedures:Immunophenotyping,immunocytochemical staining,trilineage differentiation,population doubling time and number,gene expression markers for proliferation,cell cycle progression,senescence-associatedβ-galactosidase assay,human telomerase reverse transcriptase(hTERT)expression,mycoplasma,cytomegalovirus and endotoxin detection.RESULTS Analysis of pluripotent gene markers Oct4,Sox2,and Nanog in recultured hUC-MSC revealed no significant differences.The immunophenotypic markers CD90,CD73,CD105,CD44,vimentin,CD29,Stro-1,and Lin28 were positively expressed by these recultured expanded MSCs,and were found negative for CD34,CD11b,CD19,CD45,and HLA-DR.The recultured hUC-MSC population continued to expand through passage 15.Proliferative gene expression of Pax6,BMP2,and TGFb1 showed no significant variation between recultured hUC-MSC groups.Nevertheless,a significant increase(P<0.001)in the mitotic phase of the cell cycle was observed in recultured hUC-MSCs.Cellular senescence markers(hTERT expression andβ-galactosidase activity)did not show any negative effect on recultured hUC-MSCs.Additionally,quality control assessments consistently confirmed the absence of mycoplasma,cytomegalovirus,and endotoxin contamination.CONCLUSION This study proposes the development of a novel protocol for efficiently expanding stem cell population.This would address the growing demand for larger stem cell doses needed for cellular transplantation and will significantly improve the feasibility of stem cell based therapies. 展开更多
关键词 Human umbilical cord Mesenchymal stem cells EXPANSION Cell proliferation In vitro expansion SENESCENCE
下载PDF
Sexual dimorphism of G protein-coupled receptor signaling in the brain
16
作者 Sara Aljoudi Hamdan Hamdan Khaled S.Abd-Elrahman 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1635-1636,共2页
G protein-coupled receptors(GPCRs)represent the most substantial family of membrane receptors that are targeted by U.S.Food and Drug Administration-approved drugs.Much of the preclinical research to understand the pha... G protein-coupled receptors(GPCRs)represent the most substantial family of membrane receptors that are targeted by U.S.Food and Drug Administration-approved drugs.Much of the preclinical research to understand the pharmacology of many membrane receptors including GPCRs is derived from studies in male animal models(Karp and Reavey,2019). 展开更多
关键词 DRUGS CLINICAL TARGETED
下载PDF
Neurobiology of Supporting Syntactic Chains of Self-Grooming in Rodents and Its Biochecmical Characteristics
17
作者 Giorgi Andronikashvili Tea Gurashvili +2 位作者 Khatuna Dondoladze Marina Nikolaishvili Malkhaz Makashvili 《Journal of Biosciences and Medicines》 2024年第4期330-352,共23页
Grooming is an innate behavior that serves multiple purposes and has a dual nature, reflecting both comfort and stress. Auto-grooming, in particular, is highly sensitive to stressors and can be influenced by natural a... Grooming is an innate behavior that serves multiple purposes and has a dual nature, reflecting both comfort and stress. Auto-grooming, in particular, is highly sensitive to stressors and can be influenced by natural and synthetic anxiolytics. Researchers believe that rodent grooming can be a valuable tool in translational neurobiological studies, specifically focusing on aberrant grooming, such as the syntactic chain of grooming, which can serve as an experimental model for certain human psycho-nervous disorders. 展开更多
关键词 GROOMING Microstructure Translational Medicine Clinical Medicine Stress
下载PDF
Predictive value of thrombocytopenia for bloodstream infection in patients with sepsis and septic shock
18
作者 Xia Li Sheng Wang +2 位作者 Jun Ma Su-Ge Bai Su-Zhen Fu 《World Journal of Critical Care Medicine》 2024年第1期49-57,共9页
BACKGROUND Thrombocytopenia is common in patients with sepsis and septic shock.AIM To analyse the decrease in the number of platelets for predicting bloodstream infection in patients with sepsis and septic shock in th... BACKGROUND Thrombocytopenia is common in patients with sepsis and septic shock.AIM To analyse the decrease in the number of platelets for predicting bloodstream infection in patients with sepsis and septic shock in the intensive care unit.METHODS A retrospective analysis of patients admitted with sepsis and septic shock in Xingtai People Hospital was revisited.Patient population characteristics and laboratory data were collected for analysis.RESULTS The study group consisted of 85(39%)inpatients with bloodstream infection,and the control group consisted of 133(61%)with negative results or contamination.The percentage decline in platelet counts(PPCs)in patients positive for pathogens[57.1(41.3-74.6)]was distinctly higher than that in the control group[18.2(5.1–43.1)](P<0.001),whereas the PPCs were not significantly different among those with gram-positive bacteraemia,gram-negative bacteraemia,and fungal infection.Using receiver operating characteristic curves,the area under the curve of the platelet drop rate was 0.839(95%CI:0.783-0.895).CONCLUSION The percentage decline in platelet counts is sensitive in predicting bloodstream infection in patients with sepsis and septic shock.However,it cannot identify gram-positive bacteraemia,gram-negative bacteraemia,and fungal infection. 展开更多
关键词 Platelet counts THROMBOCYTOPENIA Bloodstream infection SEPSIS Shock
下载PDF
The Impact of Opioid Drugs on Memory and Other Cognitive Functions: A Review
19
作者 Mason T. Bennett Yuliya Modna Dev Kumar Shah 《Journal of Biosciences and Medicines》 2024年第4期264-287,共24页
Background and Purpose: Opioids, used for centuries to alleviate pain, have become a double-edged sword. While effective, they come with a host of adverse effects, including memory and cognition impairment. This revie... Background and Purpose: Opioids, used for centuries to alleviate pain, have become a double-edged sword. While effective, they come with a host of adverse effects, including memory and cognition impairment. This review delves into the impact of opioid drugs on cognitive functions, explores underlying mechanisms, and investigates their prevalence in both medical care and illicit drug use. The ultimate goal is to find ways to mitigate their potential harm and address the ongoing opioid crisis. Methods: We sourced data from PubMed and Google Scholar, employing search combinations like “opioids,” “memory,” “cognition,” “amnesia,” “cognitive function,” “executive function,” and “inhibition.” Our focus was on English-language articles spanning from the inception of these databases up to the present. Results: The literature consistently reveals that opioid use, particularly at high doses, adversely affects memory and other cognitive functions. Longer deliberation times, impaired decision-making, impulsivity, and behavioral disorders are common consequences. Chronic high-dose opioid use is associated with conditions such as amnesiac syndrome (OAS), post-operative cognitive dysfunction (POCD), neonatal abstinence syndrome (NAS), depression, anxiety, sedation, and addiction. Alarming trends show increased opioid use over recent decades, amplifying the risk of these outcomes. Conclusion: Opioids cast a shadow over memory and cognitive function. These effects range from amnesiac effects, lessened cognitive function, depression, and more. Contributing factors include over-prescription, misuse, misinformation, and prohibition policies. Focusing on correct informational campaigns, removing punitive policies, and focusing on harm reduction strategies have been shown to lessen the abuse and use of opioids and thus helping to mitigate the adverse effects of these drugs. Further research into the impacts of opioids on cognitive abilities is also needed as they are well demonstrated in the literature, but the mechanism is not often completely understood. 展开更多
关键词 OPIOIDS MEMORY COGNITION PAIN
下载PDF
Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome 被引量:24
20
作者 Maria M Buckley Siobhain M O'Mahony Dervla O'Malley 《World Journal of Gastroenterology》 SCIE CAS 2014年第27期8846-8858,共13页
Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome(IBS). However, partly due to the lack of disease-defining biomarkers, unde... Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome(IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares.Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS. 展开更多
关键词 Stress Corticotropin-releasing factor Proinflammat
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部