Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular appro...Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular approaches, are utilized to counteract this pathogen. Moreover, some tolerant or resistant rice varieties have been developed with the help of breeding programmes. Isolation and molecular characterization of different blast resistance genes now open the gate for new possibilities to elucidate the actual allelic variants of these genes via various molecular breeding and transgenic approaches. However, the behavioral pattern of this fungus breakups the resistance barriers in the resistant or tolerant rice varieties. This host-pathogen barrier will be possibly countered in future research by comparative genomics data from available genome sequence data of rice and M. oryzae for durable resistance. Present review emphasized fascinating recent updates, new molecular breeding approaches, transgenic and genomics approaches(i.e. mi RNA and genome editing) for the management of blast disease in rice. The updated information will be helpful for the durable, resistance breeding programme in rice against blast pathogen.展开更多
Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for s...Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for spatial Fe accumulation in grains by Prussian blue staining method.Spatial ferritin protein distribution in grains was visualized by immunohistochemistry,and ferritin expression was assessed in selected rice varieties using semi-quantitative reverse transcription PCR.Three popular rice varieties,namely Sarjoo 52,Madhukar and Jalmagna,and the O.rufipogon variety showed Fe in all the regions of grains,and the highest Fe concentration was observed in the embryo region.Some high-yielding varieties like Swarna,Swarna Sub 1,CSR13 and NDRR359 had lower Fe concentration in the embryo region.The highest Fe concentration was detected in O.rufipogon(49.8μg/g),followed by Sarjoo 52(26.1μg/g)and Madhukar(25.7μg/g).Phytic acid concentration was the minimum in O.rufipogon(5.75 mg/g)followed by Sarjoo 52(5.83 mg/g).Western blot and semi-quantitative reverse transcription PCR showed higher expression of ferritin gene in O.rufipogon,Sarjoo 52 and Madhukar.In conclusion,O.rufipogon and Sarjoo 52 had higher Fe concentration in the embryo regions as well as endosperm and aleurone layer,whereas the other varieties had lower Fe concentration in the endosperm.Sarjoo 52 could be used as a donor in the rice breeding program for the generation of new varieties with elevated grain Fe concentration.展开更多
Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant...Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant diseases are temperature,moisture,light,and CO_(2) concentration.These factors cause physiological changes in plants that result in increase in intensity of crop diseases.Climate change causes a significant impact on germination,reproduction,sporulation and spore dispersal of pathogens.Climate change affects all life stages of the pathogen as well as its host to cause impact on host-pathogen interaction which facilitates the emergence of new races of the pathogen ultimately breakdowns the host resistance.It also affects the microbial community in the soil which is beneficial to the plants in various aspects.The minor diseases become major ones due to alteration in climatic parameters thus posing a threat to the food security.展开更多
文摘Pyricularia oryzae anamorph of Magnaporthe oryzae is one of the most notorious fungal pathogens causing severe economic loss in rice production worldwide. Various methods, viz. cultural, biological and molecular approaches, are utilized to counteract this pathogen. Moreover, some tolerant or resistant rice varieties have been developed with the help of breeding programmes. Isolation and molecular characterization of different blast resistance genes now open the gate for new possibilities to elucidate the actual allelic variants of these genes via various molecular breeding and transgenic approaches. However, the behavioral pattern of this fungus breakups the resistance barriers in the resistant or tolerant rice varieties. This host-pathogen barrier will be possibly countered in future research by comparative genomics data from available genome sequence data of rice and M. oryzae for durable resistance. Present review emphasized fascinating recent updates, new molecular breeding approaches, transgenic and genomics approaches(i.e. mi RNA and genome editing) for the management of blast disease in rice. The updated information will be helpful for the durable, resistance breeding programme in rice against blast pathogen.
基金supported by the Department of Biotechnology,New Delhi,India.
文摘Rice varieties having high Fe concentration in the endospermic region can be used as a good source for Fe deficit population.In this study,303 Oryza sativa varieties and 1 Oryza rufipogon accession were assessed for spatial Fe accumulation in grains by Prussian blue staining method.Spatial ferritin protein distribution in grains was visualized by immunohistochemistry,and ferritin expression was assessed in selected rice varieties using semi-quantitative reverse transcription PCR.Three popular rice varieties,namely Sarjoo 52,Madhukar and Jalmagna,and the O.rufipogon variety showed Fe in all the regions of grains,and the highest Fe concentration was observed in the embryo region.Some high-yielding varieties like Swarna,Swarna Sub 1,CSR13 and NDRR359 had lower Fe concentration in the embryo region.The highest Fe concentration was detected in O.rufipogon(49.8μg/g),followed by Sarjoo 52(26.1μg/g)and Madhukar(25.7μg/g).Phytic acid concentration was the minimum in O.rufipogon(5.75 mg/g)followed by Sarjoo 52(5.83 mg/g).Western blot and semi-quantitative reverse transcription PCR showed higher expression of ferritin gene in O.rufipogon,Sarjoo 52 and Madhukar.In conclusion,O.rufipogon and Sarjoo 52 had higher Fe concentration in the embryo regions as well as endosperm and aleurone layer,whereas the other varieties had lower Fe concentration in the endosperm.Sarjoo 52 could be used as a donor in the rice breeding program for the generation of new varieties with elevated grain Fe concentration.
文摘Change in global climate is primarily due to rising concentrations of greenhouse gases in the atmosphere that is mostly caused by human activities.The important factors affecting the occurrence and spread of the plant diseases are temperature,moisture,light,and CO_(2) concentration.These factors cause physiological changes in plants that result in increase in intensity of crop diseases.Climate change causes a significant impact on germination,reproduction,sporulation and spore dispersal of pathogens.Climate change affects all life stages of the pathogen as well as its host to cause impact on host-pathogen interaction which facilitates the emergence of new races of the pathogen ultimately breakdowns the host resistance.It also affects the microbial community in the soil which is beneficial to the plants in various aspects.The minor diseases become major ones due to alteration in climatic parameters thus posing a threat to the food security.