期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Influence of Various Earth-Retaining Walls on the Dynamic Response Comparison Based on 3D Modeling
1
作者 Muhammad Akbar Huali Pan +2 位作者 Jiangcheng Huang Bilal Ahmed Guoqiang Ou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2835-2863,共29页
The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement co... The present work aims to assess earthquake-induced earth-retaining(ER)wall displacement.This study is on the dynamics analysis of various earth-retaining wall designs in hollow precast concrete panels,reinforcement concrete facing panels,and gravity-type earth-retaining walls.The finite element(FE)simulations utilized a 3D plane strain condition to model full-scale ER walls and numerous nonlinear dynamics analyses.The seismic performance of differentmodels,which includes reinforcement concrete panels and gravity-type and hollowprecast concrete ER walls,was simulated and examined using the FE approach.It also displays comparative studies such as stress distribution,deflection of the wall,acceleration across the wall height,lateral wall displacement,lateral wall pressure,and backfill plastic strain.Three components of the created ER walls were found throughout this research procedure.One is a granular reinforcement backfill,while the other is a wall-facing panel and base foundation.The dynamic response effects of varied earth-retaining walls have also been studied.It was discovered that the facing panel of the model significantly impacts the earthquake-induced displacement of ER walls.The proposed analytical model’s validity has been evaluated and compared with the reinforcement concrete facing panels,gravity-type ER wall,scientifically available data,and American Association of State Highway and Transportation Officials(AASHTO)guidelines results based on FE simulation.The results of the observations indicate that the hollow prefabricated concrete ER wall is the most feasible option due to its lower displacement and high-stress distribution compared to the two types.The methodology and results of this study establish standards for future analogous investigations and professionals,particularly in light of the increasing computational capabilities of desktop computers. 展开更多
关键词 Seismic analysis finite element modeling earth-retaining ER walls dynamic response structural resilience
下载PDF
Evaluation of integration methods for hybrid simulation of complex structural systems through collapse 被引量:4
2
作者 Maikol Del Carpio R. M.Javad Hashemi Gilberto Mosqueda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2017年第4期745-759,共15页
This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations.The target application is not n... This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations.The target application is not necessarily for real-time testing,but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models.Four case studies are presented and discussed.In the first case study,the accuracy of integration schemes including two widely used methods,namely,modified version of the implicit Newmark with fixed-number of iteration(iterative)and the operator-splitting(non-iterative)is examined through pure numerical simulations.The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method.The physical sub-structure in these tests consists of a single-degree-of-freedom(SDOF)cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations.In case study three,the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure.Lastly,a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame.The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations.The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations. 展开更多
关键词 混合模拟 崩溃 集成方法 失衡力量 稳定性和精确性 数字错误
下载PDF
Control of surface wettability via strain engineering 被引量:1
3
作者 Wei Xiong Jefferson Zhe Liu +1 位作者 Zhi-Liang Zhang Quan-Shui Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第4期543-549,共7页
Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic simulations, we... Reversible control of surface wettability has wide applications in lab-on-chip systems, tunable optical lenses, and microfluidic tools. Using a graphene sheet as a sample material and molecular dynamic simulations, we demonstrate that strain engineering can serve as an effective way to control the surface wettability. The contact angles θ of water droplets on a graphene vary from 72.5 to 106 under biaxial strains ranging from 10% to 10% that are applied on the graphene layer. For an intrinsic hydrophilic surface (at zero strain), the variation of θ upon the applied strains is more sensitive, i.e., from 0 to 74.8 . Overall the cosines of the contact angles exhibit a linear relation with respect to the strains. In light of the inherent dependence of the contact angle on liquid-solid interfacial energy, we develop an analytic model to show the cos θ as a linear function of the adsorption energy E ads of a single water molecule over the substrate surface. This model agrees with our molecular dynamic results very well. Together with the linear dependence of E ads on biaxial strains, we can thus understand the effect of strains on the surface wettability. Thanks to the ease of reversibly applying mechanical strains in micro/nano-electromechanical systems, we believe that strain engineering can be a promising means to achieve the reversibly control of surface wettability. 展开更多
关键词 表面润湿性 正反转控制 轴向应变 工程 纳米机电系统 分子动力学模拟 线性关系 光学镜片
下载PDF
Fundamental Issues Towards Unified Design Theory of Recycled and Natural Aggregate Concrete Components 被引量:1
4
作者 Jianzhuang Xiao Kaijian Zhang +2 位作者 Tao Ding Qingtian Zhang Xuwen Xiao 《Engineering》 SCIE EI CAS CSCD 2023年第10期188-197,共10页
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque... In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures. 展开更多
关键词 Recycled aggregate concrete(RAC) Natural aggregate concrete(NAC) Strength determination Constitutive relation Reliability Unified design theory
下载PDF
Elements of Structural Masonry Reinforced with Sisal Fibers
5
作者 Indara Soto Izquierdo Marcio Antonio Ramalho 《Journal of Civil Engineering and Architecture》 2013年第2期141-146,共6页
关键词 剑麻纤维 增强结构 砌体 元素 建筑材料 物理性能 实验室试验 天然纤维
下载PDF
Introduction to the Special Issue on Recent Developments of Isogeometric Analysis and Its Applications in Structural Optimization
6
作者 Yingjun Wang Zhenpei Wang +3 位作者 Xiaowei Deng David J.Benson Damiano Pasini Shuting Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第9期783-785,共3页
Isogeometric analysis(IGA),which aims at integrating CAD and CAE models,is one of the most active research topics in both computational mechanics and computer-aided geometric design.The rapidly growing interests in IG... Isogeometric analysis(IGA),which aims at integrating CAD and CAE models,is one of the most active research topics in both computational mechanics and computer-aided geometric design.The rapidly growing interests in IGA has led to profound developments of relevant theories and applications,one of which being structural optimization.With the rapid growth of researches in IGA,this special issue contributes to highlight recent developments,challenges and opportunities of IGA and IGA-based structural design optimization,with focuses on theory development,numerical implementations and potential applications. 展开更多
关键词 OPTIMIZATION COMPUTER GEOMETRIC
下载PDF
Unraveling the influence of surface roughness on oil displacement by Janus nanoparticles
7
作者 Yuan-Hao Chang Sen-Bo Xiao +2 位作者 Rui Ma Zhi-Liang Zhang Jian-Ying He 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2512-2520,共9页
Janus nanoparticles(JNPs)possess great potential in recovering the residual oil from reservoirs,however,the fundamental interaction mechanisms among nanoparticles,the oil,and reservoir wall characteristics remain to b... Janus nanoparticles(JNPs)possess great potential in recovering the residual oil from reservoirs,however,the fundamental interaction mechanisms among nanoparticles,the oil,and reservoir wall characteristics remain to be elucidated.In this work,models of oil trapping grooves with different geometric features are subjected to molecular dynamics simulations for investigating the influences of roughness parameters on oil displacement dynamics by JNPs.Four key surface geometry parameters and different degrees of surface hydrophobicity are considered.Our results indicate that JNPs hold an outstanding performance in displacing residual oil on weakly to moderately hydrophobic surfaces.Overall,smaller entry and exit angles,the larger aspect ratio of the oil trapping grooves,and a bigger tip length of the rough ridges lead to superior oil recovery.Among the key geometric parameters,the aspect ratio of the oil trapping grooves plays the dominant role.These insights about the interaction of surface properties and JNPs and the resulting trapped oil displacement could serve as a theoretical reference for the application of JNPs for targeted reservoir conditions. 展开更多
关键词 Janus nanoparticles Oil displacement Enhanced oil recovery Molecular dynamics simulation Rough surface
下载PDF
Multi-criteria comparative analysis of the pressure drop on coal gangue fly-ash slurry at different parts along an L-shaped pipeline
8
作者 Defeng Wang Dengwu Jiao +2 位作者 Zhanbo Cheng Qingwen Shi Helmut Mischo 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期129-145,共17页
Disposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment.Backfill mining is a promising practice for turning those hazardous wastes ... Disposing of coal gangue and fly-ash on the surface is a risky method with tremendous potential catastrophic consequences for the environment.Backfill mining is a promising practice for turning those hazardous wastes into functional backfill materi-als.Unfortunately,how to efficiently deliver the slurry to the desired places remains under-researched.To address this issue,the computational fluid dynamics software Fluent was used in the current study in addition to a laboratory rheological test to simulate the impact of various parameters on the evolution of pressure at a particular section of the pipeline.Furthermore,the response surface method was employed to investigate how the various components and their corresponding influencing weights interact to affect the pressure drop.This study demonstrates that the pressure drop of the slurry is highly influenced by slurry concentration,speed,and pipe diameter.While conveying speed is the main component in the bend section,pipe diameter takes over in the horizontal and vertical pipe sections. 展开更多
关键词 Coal gangue slurry Pressure drop Numerical simulation Response surface analysis
下载PDF
Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM 被引量:9
9
作者 Ingrid Tomac Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期92-104,共13页
This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has be... This paper presents an improved understanding of coupled hydro-thermo-mechanical(HTM) hydraulic fracturing of quasi-brittle rock using the bonded particle model(BPM) within the discrete element method(DEM). BPM has been recently extended by the authors to account for coupled convective econductive heat flow and transport, and to enable full hydro-thermal fluidesolid coupled modeling.The application of the work is on enhanced geothermal systems(EGSs), and hydraulic fracturing of hot dry rock(HDR) is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convectiveeconductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity. 展开更多
关键词 Hydro-thermo-mechanical (HTM) modeling Enhanced geothermal systems (EGSs) Discrete element method (DEM) Bonded particle model (BPM) Conductive-convective heat flow and transport Hydraulic FRACTURING Rock permeability enhancement
下载PDF
Response of single piles and pipelines in liquefaction-induced lateral spreads using controlled blasting 被引量:7
10
作者 Scott A.Ashford Teerawut Juirnarongrit 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第2期181-193,共13页
Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island,Japan, to assess the behavior of piles and pipelines subjected to lateral spreading. Test specimens were ex... Two full-scale experiments using controlled blasting were conducted in the Port of Tokachi on Hokkaido Island,Japan, to assess the behavior of piles and pipelines subjected to lateral spreading. Test specimens were extensively instrumented with strain gauges to measure the distribution of moment during lateral spreading. This allowed us to compute the loading condition, as well as to conduct damage and performance assessments on the piles and pipelines. This paper presents the test results and discussions on the response of single piles and pipelines observed from the full-scale experiments. Based on the test results, it can be concluded that using controlled blasting successfully liquefied the soil, and subsequently induced lateral spreading. The movements of the single pile, as well as the transverse pipelines, were approximately the same as the free field soil movement. Observed moment distribution of the single pile indicated that global translation of the liquefied soil layer provided insignificant force to the pile. In addition, the degree of fixity at the pile tip significantly affected the moment along the pile as well as the pile head displacement. The pile with a higher degree of fixity at the pile tip had smaller pile head displacement but larger maximum moment. 展开更多
关键词 PILES pipelines PILE tests LATERAL SPREADING LIQUEFACTION soil-pile INTERACTION
下载PDF
Damage assessment for seismic response of recycled concrete filled steel tube columns 被引量:4
11
作者 Huang Yijie Xiao Jianzhuang Shen Luming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期607-616,共10页
A model for evaluating structural damage of recycled aggregate concrete filled steel tube(RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect... A model for evaluating structural damage of recycled aggregate concrete filled steel tube(RCFST) columns under seismic effects is proposed in this paper. The proposed model takes the lateral deformation and the effect of repeated cyclic loading into account. Available test results were collected and utilized to calibrate the parameters of the proposed model. A seismic test for six RCFST columns was also performed to validate the proposed damage assessment model. The main test parameters were the recycled coarse aggregate(RCA) replacement percentage and the bond-slip property. The test results indicated that the seismic performance of the RCFST member depends on the RCA contents and their damage index increases as the RCA replacement percentage increases. It is also indicated that the damage degree of RCFST changes with the variation of the RCA replacement percentage. Finally, comparisons between the RCA contents, lateral deformation ratio and damage degree were implemented. It is suggested that an improvement procedure should be implemented in order to compensate for the performance difference between the RCFST and normal concrete filled steel tubes(CFST). 展开更多
关键词 钢管混凝土结构 再生粗骨料 损伤评估 地震反应 混凝土柱 损伤模型 粘结滑移性能 抗震试验
下载PDF
Real-Time Hybrid Simulation of Seismically Isolated Structures with Full-Scale Bearings and Large Computational Models 被引量:3
12
作者 Alireza Sarebanha Andreas H.Schellenberg +2 位作者 Matthew J.Schoettler Gilberto Mosqueda Stephen A.Mahin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第9期693-717,共25页
Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response ... Hybrid simulation can be a cost effective approach for dynamic testing of structural components at full scale while capturing the system level response through interactions with a numerical model.The dynamic response of a seismically isolated structure depends on the combined characteristics of the ground motion,bearings,and superstructure.Therefore,dynamic full-scale system level tests of isolated structures under realistic dynamic loading conditions are desirable towards a holistic validation of this earthquake protection strategy.Moreover,bearing properties and their ultimate behavior have been shown to be highly dependent on rate-of-loading and scale size effects,especially under extreme loading conditions.Few laboratory facilities can test full-scale seismic isolation bearings under prescribed displacement and/or loading protocols.The adaptation of a full-scale bearing test machine for the implementation of real-time hybrid simulation is presented here with a focus on the challenges encountered in attaining reliable simulation results for large scale dynamic tests.These advanced real-time hybrid simulations of large and complex hybrid models with several thousands of degrees of freedom are some of the first to use high performance parallel computing to rapidly execute the numerical analyses.Challenges in the experimental setup included measured forces contaminated by delay and other systematic control errors in applying desired displacements.Friction and inertial forces generated by the large-scale loading apparatus can affect the accuracy of measured force feedbacks.Reliable results from real-time hybrid simulation requires implementation of compensation algorithms and correction of these various sources of errors.Overall,this research program confirms that real-time hybrid simulation is a viable testing method to experimentally assess the behavior of full-scale isolators while capturing interactions with the numerical models of the superstructure to evaluate system level and in-structure response. 展开更多
关键词 Real-time hybrid simulation SEISMIC ISOLATION PARALLEL processing full SCALE BEARING experimental testing
下载PDF
Simulation of ductile fracture initiation in steels using a stress triaxiality-shear stress coupled model 被引量:2
13
作者 Yazhi Zhu Michael D.Engelhardt Zuanfeng Pan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第3期600-614,共15页
Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress tria... Micromechanics-based models provide powerful tools to predict initiation of ductile fracture in steels. A new criterion is presented herein to study the process of ductile fracture when the effects of both stress triaxiality and shear stress on void growth and coalescence are considered. Finite-element analyses of two different kinds of steel, viz. ASTM A992 and AISI 1045, were carried out to monitor the history of stress and strain states and study the methodology for determining fracture initiation. Both the new model and void growth model (VGM) were calibrated for both kinds of steel and their accuracy for predicting fracture initiation evaluated. The results indicated that both models offer good accuracy for predicting fracture of A992 steel. However, use of the VGM leads to a significant deviation for 1045 steel, while the new model presents good performance for predicting fracture over a wide range of stress triaxiality while capturing the effect of shear stress on fracture initiation. 展开更多
关键词 DUCTILE fracture VOID growth STRESS TRIAXIALITY Shear STRESS ratio ASTM A992 STEEL AISI 1045 STEEL
下载PDF
Serviceability evaluation of water supply networks under seismic loads utilizing their operational physical mechanism 被引量:2
14
作者 Miao Huiquan Li Jie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第1期283-296,共14页
The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation pres... The serviceability of water supply networks(WSNs)under seismic loads has significant importance for estimating the probable losses and the impact of diminished functionality on affected communities.The innovation presented in this paper is suggesting a new strategy to evaluate the seismic serviceability of WSNs,utilizing their operational physical mechanism.On one hand,this method can obtain the seismic serviceability of each node as well as entire WSNs.On the other hand,this method can dynamically reflect the propagation of randomness from ground motions to WSNs.First,a finite element model is established to capture the seismic response of buried pipe networks,and a leakage model is suggested to obtain the leakage area of WSNs.Second,the transient flow analysis of WSNs with or without leakage is derived to obtain dynamic water flow and pressure.Third,the seismic serviceability of WSNs is analyzed based on the probability density evolution method(PDEM).Finally,the seismic serviceability of a real WSN in Mianzhu city is assessed to illustrate the method.The case study shows that randomness from the ground motions can obviously affect the leakage state and the probability density of the nodal head during earthquakes. 展开更多
关键词 water supply networks seismic serviceability nodal water pressure stochastic ground motions probability density evolution method
下载PDF
Geometry deviation effects of railway catenaries on pantograph– catenary interaction: a case study in Norwegian Railway System 被引量:2
15
作者 Yang Song Tengjiao Jiang +1 位作者 Petter Navik Anders Rønnquist 《Railway Engineering Science》 2021年第4期350-361,共12页
This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model ... This paper presents a non-contact measurement of the realistic catenary geometry deviation in the Norwegian railway network through a laser rangefinder.The random geometry deviation is included in the catenary model to investigate its effect on the pantograph–catenary interaction.The dispersion of the longitudinal deviation is assumed to follow a Gaussian distribution.A power spectrum density represents the vertical deviation in the contact wire.Based on the Monte Carlo method,several geometry deviation samples are generated and included in the catenary model.A lumped mass pantograph with flexible collectors is employed to reproduce the high-frequency behaviours.The stochastic analysis results indicate that the catenary geometry deviation causes a significant dispersion of the pantograph–catenary interaction response.The contact force standard deviations measured by the inspection vehicle are within the scope of the simulation results.A critical cut-off frequency that covers 1/16 of the dropper interval is suggested to fully describe the effect of the catenary geometry deviation on the contact force.The statistical minimum contact force is recommended to be modified according to the tolerant contact loss rate at high frequency.An unpleasant interaction performance of the pantograph–catenary can be expected at the catenary top speed when the random catenary geometry deviation is included. 展开更多
关键词 RAILWAY PANTOGRAPH CATENARY Geometry deviation Non-contact measurement Contact force
下载PDF
Progressive Collapse of Steel Frames 被引量:3
16
作者 Kamel Sayed Kandil Ehab Abd El Fattah Ellobody Hanady Eldehemy 《World Journal of Engineering and Technology》 2013年第3期39-48,共10页
This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Non-linear finite element models have been developed and verified against existing data reported in the ... This paper investigates the behavior of steel frames under progressive collapse using the finite element method. Non-linear finite element models have been developed and verified against existing data reported in the literature as well as against tests conducted by the authors. The nonlinear material properties of steel and nonlinear geometry were considered in the finite element models. The validated models were used to perform extensive parametric studies investigating different parameters affecting the behavior of steel frames under progressive collapse. The investigated parameters are comprised of different geometries, different number of stories and different dynamic conditions. The force redistribution and failure modes were evaluated from the finite element analyses, with detailed discussions presented. 展开更多
关键词 FINITE ELEMENT Model MULTISTORY Buildings Nonlinear Analysis PROGRESSIVE COLLAPSE Steel FRAMES
下载PDF
Parallel finite element modeling of earthquake ground response and liquefaction 被引量:1
17
作者 陆金池 彭军 +2 位作者 Ahmed Elgamal 杨朝晖 Kincho H.Law 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第1期23-37,共15页
Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and ... Parallel computing is a promising approach to alleviate the computational demand in conducting large-scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite elements are employed within an incremental plasticity, coupled solid-fluid formulation. A constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction and associated accumulation of shear deformations. Key elements of the computational strategy employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for ordering of the finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is efficiently scalable to a large number of processors. 展开更多
关键词 有限元分析 数字模型 地震 地面响应
下载PDF
Experimental Behavior of Partially Prestressed High Strength Concrete Beams 被引量:3
18
作者 Shady H. Salem Khalid M. Hilal +1 位作者 Tarek K. Hassan Ahmed S. Essawy 《Open Journal of Civil Engineering》 2013年第3期26-32,共7页
In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength con... In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes. 展开更多
关键词 PARTIALLY PRESTRESSED High Strength Concrete BEAMS SERVICEABILITY BEHAVIOR Failure Modes
下载PDF
Dynamic Characteristics of a Curved Cable-stayed Bridge:Operational Modal Testing and FE Modeling 被引量:1
19
作者 Bruno Briseghella Fulvio Busatta +2 位作者 Carmelo Gentile Enzo Siviero Tobia Zordan 《施工技术》 CAS 北大核心 2010年第5期111-117,共7页
This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( ... This paper summarizes the analytical and experimental dynamic analyses carried out to assess the actual dynamic behaviour of a curved cable-stayed bridge,recently erected in the commercial harbour of Porto Marghera ( Venice,Italy). Ambient vibration tests were carried out to determine the dynamic characteristics of the bridge and more than 20 modes were identified in the frequency range 0~10Hz. In the theoretical study,a 3D FE model of the bridge was developed using an integrated CAD-FEA approach; subsequently,the information obtained from the field tests,combined with simple manual tuning,provided a linear elastic model,accurately fitting the modal parameters of the bridge in its present condition. 展开更多
关键词 动力学 CAD技术 施工技术 3D模型
下载PDF
Experimental Investigation of Progressive Collapse of Steel Frames 被引量:1
20
作者 Kamel Sayed Kandil Ehab Abd El Fattah Ellobody Hanady Eldehemy 《World Journal of Engineering and Technology》 2013年第3期33-38,共6页
This paper reports two new tests conducted to augment available data highlighting the structural performance of multistory steel frames under progressive collapse. The investigated steel frames had different geometrie... This paper reports two new tests conducted to augment available data highlighting the structural performance of multistory steel frames under progressive collapse. The investigated steel frames had different geometries, different boundary conditions, different collapse mechanisms, different damping ratios and different connections. Overall, the paper addresses how multistory frames would behave when subjected to local damage or loss of a main structural carrying element. The obtained results can form a data base for nonlinear finite element models. The deformations of the investigated steel frames and failure modes under progressive collapse were predicted from the finite element analysis, with detailed discussions presented. 展开更多
关键词 Experimental INVESTIGATIONS FINITE Element Model PROGRESSIVE COLLAPSE Steel FRAMES
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部