Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of re...Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity.展开更多
This paper describes the installation and management of the monitoring system of the “Our Lady of Tears Shrine” in Syracuse, whose dome is an imposing r.c. and prestressed r.c. structure of about 22,000 ton that was...This paper describes the installation and management of the monitoring system of the “Our Lady of Tears Shrine” in Syracuse, whose dome is an imposing r.c. and prestressed r.c. structure of about 22,000 ton that was seismically isolated by flat sliding devices with hysteretic dampers. The monitoring system, representing an upgrading and improvement of an old system never made working, has some innovative features, because it allows to manage with the same dedicated hardware and software both the slow (thermal variations, relative humidity, wind direction and velocity) and the fast acquisitions (dynamic vibrations by wind and earthquake). The monitoring system was inserted among those structures maintained and controlled by the Seismic Observatory of Structures of the National Department of Civil Protection. Some records of low magnitude earthquakes allowed to validate the correct behaviour of the whole structure, as well as to make a dynamic identification of the complex construction and to calibrate a detailed finite element model of the Sanctuary, thus predicting isolators’ behaviour under design earthquake.展开更多
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismi...The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.展开更多
With rapid developments of nanoengineering in the recent years, highperformance and multi-functional nanomaterials, exhibiting new and enhanced physical and chemical properties, are introduced with innumerable conceiv...With rapid developments of nanoengineering in the recent years, highperformance and multi-functional nanomaterials, exhibiting new and enhanced physical and chemical properties, are introduced with innumerable conceivable applications. The recent advances in design, synthesis and characterization techniques of nano-materials have enabled the fabrication of modern nano-electromechanical systems (NEMS).展开更多
Confluences act as critical nodes in a river system.They affect hydrodynamics,sediment transport,bed morphology,and eco-hydraulics of the river system.Convergence of streams produces the complex mechanism of flow mome...Confluences act as critical nodes in a river system.They affect hydrodynamics,sediment transport,bed morphology,and eco-hydraulics of the river system.Convergence of streams produces the complex mechanism of flow momentum and mass mixing which may affect the aquatic environment locally and even lasting for a long distance downstream.The confluence creates a hotspot for the river system’s ecological change,which usually leads to changes in water temperature,suspended-sediment load,bed material,nutrient concentrations,water chemistry,and organic-matter content.Hence,the dynamics of river confluences are very complex and have critical effects on river system’s water environment and ecology.For this reason,a review summarizing turbulent flow,sediment transport,morphological-dynamics,mixing processes,and their effects on the ecology of the aquatic environment at river confluences is in order.A future research agenda and opportunities pertinent to river confluence are vitally emphasized as a multidisciplinary research topic.展开更多
Floating photovoltaic(FPV)systems are one of the globally emerging technologies of renewable energy production that tend to balance the water-energy demand by effectively saving the evaporated water from reservoirs wh...Floating photovoltaic(FPV)systems are one of the globally emerging technologies of renewable energy production that tend to balance the water-energy demand by effectively saving the evaporated water from reservoirs while generating electrical power.This study presents the performance analysis of a model FPV plant in an Indian reservoir.The Mettur dam reservoir located in Tamil Nadu,India with a hydroelectric power plant of 150-MW capacity is considered as a test case.The preliminary design of the FPV plant is proposed based on a detailed study of the key design elements and their suitability for Indian reservoirs.The proposed plant is numerically analysed for various tilt angles,mounting systems and tracking mechanisms in order to assess its potential power generation.A flat-mount system in landscape orientation was found to exhibit a high performance ratio.Further,a fixed-tilt FPV system with a panel slope of 10°and an FPV system with single-axis tracking were found to be suitable for the Mettur reservoir.Further,cost analysis of the FPV system is also presented along with the carbon-footprint estimation to establish the economic and environmental benefits of the system.The results show that the total potential CO_(2) saving by a FPV system with tracking is 135918.87 t CO_(2) and it is 12.5%higher than that of a fixed-mount FPV system.展开更多
The recent proliferation of wind turbines has revealed problems in their vulnerability under different site conditions, as evidenced by recent collapses of wind towers after severe actions. Analyses of structures subj...The recent proliferation of wind turbines has revealed problems in their vulnerability under different site conditions, as evidenced by recent collapses of wind towers after severe actions. Analyses of structures subjected to variable actions can be conducted through several methods with different accuracy levels. Nonlinear dynamics is the most reliable among such methods. This study develops a numerical procedure to obtain approximate solutions for rigid-plastic responses of structures subjected to base harmonic pulses. The procedure's model is applied to a wind turbine tower subjected to inertial forces generated by harmonic ground acceleration, and failure is assumed to depend on the formation of shear hinges. The proposed approach provides an efficient representation of the post-elastic behavior of the structure, has a low computational cost and high effectiveness, and uses a limited number of mechanical parameters.展开更多
Poromechanics plays a key role in modelling hard and soft tissue behaviours,by providing a thermodynamic framework in which chemo-mechanical mutual interactions among fluid and solid constituents can be consistently r...Poromechanics plays a key role in modelling hard and soft tissue behaviours,by providing a thermodynamic framework in which chemo-mechanical mutual interactions among fluid and solid constituents can be consistently rooted,at different scale levels.In this context,how different biological species(including cells,extra-cellular components and chemical metabolites)interplay within complex environments is studied for characterizing the mechanobiology of tumor growth,governed by intra-tumoral residual stresses that initiate mechanotransductive processes deregulating normal tissue homeostasis and leading to tissue remodelling.Despite the coupling between tumor poroelasticity and interspecific competitive dynamics has recently highlighted how microscopic cells and environment interactions influence growth-associated stresses and tumor pathophysiology,the nonlinear interlacing among biochemical factors and mechanics somehow hindered the possibility of gaining qualitative insights into cells dynamics.Motivated by this,in the present work we recover the linear poroelasticity in order to benefit of a reduced complexity,so first deriving the well-known Lyapunov stability criterion from the thermodynamic dissipation principle and then analysing the stability of the mechanical competition among cells fighting for common space and resources during cancer growth and invasion.At the end,the linear poroelastic model enriched by interspecific dynamics is also exploited to show how growth anisotropy can alter the stress field in spherical tumor masses,by thus indirectly affecting cell mechano-sensing.展开更多
文摘Self-centering earthquake-resistant structures have received increased attention due to their ability to reduce post-earthquake residual deformations and,thus,repair time and cost.This stimulated the development of recentering shape memory alloy(SMA)dampers that use superelastic nitinol wires to dissipate energy and self-center the structure.However,there are still a few case studies applications on full-scale RC buildings in the literature.Moreover,general guidelines or even simplified approaches for the practical design of SMA damped braces are still lacking.This paper focuses on evaluating the effect of using self-centering shape memory alloy dampers for buckling-restrained braces applied for the seismic retrofit of a complex RC building structure.A design method originally proposed for elastoplastic dampers was implemented to size the SMA dampers to be placed on selected spans and stories of a building.The effectiveness of the design procedure was demonstrated by nonlinear time-history analyses under different sets of earthquake strong ground motions.The analysis results show that the recentering shape memory alloy bracing system is effective in limiting the maximum transient inter-story drifts and reducing the residual inter-story drifts after strong seismic events,due to its excellent recentering behavior together with its not negligible energy dissipation capacity.
文摘This paper describes the installation and management of the monitoring system of the “Our Lady of Tears Shrine” in Syracuse, whose dome is an imposing r.c. and prestressed r.c. structure of about 22,000 ton that was seismically isolated by flat sliding devices with hysteretic dampers. The monitoring system, representing an upgrading and improvement of an old system never made working, has some innovative features, because it allows to manage with the same dedicated hardware and software both the slow (thermal variations, relative humidity, wind direction and velocity) and the fast acquisitions (dynamic vibrations by wind and earthquake). The monitoring system was inserted among those structures maintained and controlled by the Seismic Observatory of Structures of the National Department of Civil Protection. Some records of low magnitude earthquakes allowed to validate the correct behaviour of the whole structure, as well as to make a dynamic identification of the complex construction and to calibrate a detailed finite element model of the Sanctuary, thus predicting isolators’ behaviour under design earthquake.
基金partially funded by Italian Department of Civil Protection in the frame of the National ReLUIS Project 2005-2008 line 2-Theme 2
文摘The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.
文摘With rapid developments of nanoengineering in the recent years, highperformance and multi-functional nanomaterials, exhibiting new and enhanced physical and chemical properties, are introduced with innumerable conceivable applications. The recent advances in design, synthesis and characterization techniques of nano-materials have enabled the fabrication of modern nano-electromechanical systems (NEMS).
基金supported by the National Natural Science Foundation of China(Grant Nos.51779080,U2040205 and 52079044)supported by the Fundamental Research Funds for the Central Universities(Grant No.20195025712,B200202237)+1 种基金the 111 Project(Grant No.B17015)the Fok Ying Tung Education Foundation(Grant No.520013312)。
文摘Confluences act as critical nodes in a river system.They affect hydrodynamics,sediment transport,bed morphology,and eco-hydraulics of the river system.Convergence of streams produces the complex mechanism of flow momentum and mass mixing which may affect the aquatic environment locally and even lasting for a long distance downstream.The confluence creates a hotspot for the river system’s ecological change,which usually leads to changes in water temperature,suspended-sediment load,bed material,nutrient concentrations,water chemistry,and organic-matter content.Hence,the dynamics of river confluences are very complex and have critical effects on river system’s water environment and ecology.For this reason,a review summarizing turbulent flow,sediment transport,morphological-dynamics,mixing processes,and their effects on the ecology of the aquatic environment at river confluences is in order.A future research agenda and opportunities pertinent to river confluence are vitally emphasized as a multidisciplinary research topic.
文摘Floating photovoltaic(FPV)systems are one of the globally emerging technologies of renewable energy production that tend to balance the water-energy demand by effectively saving the evaporated water from reservoirs while generating electrical power.This study presents the performance analysis of a model FPV plant in an Indian reservoir.The Mettur dam reservoir located in Tamil Nadu,India with a hydroelectric power plant of 150-MW capacity is considered as a test case.The preliminary design of the FPV plant is proposed based on a detailed study of the key design elements and their suitability for Indian reservoirs.The proposed plant is numerically analysed for various tilt angles,mounting systems and tracking mechanisms in order to assess its potential power generation.A flat-mount system in landscape orientation was found to exhibit a high performance ratio.Further,a fixed-tilt FPV system with a panel slope of 10°and an FPV system with single-axis tracking were found to be suitable for the Mettur reservoir.Further,cost analysis of the FPV system is also presented along with the carbon-footprint estimation to establish the economic and environmental benefits of the system.The results show that the total potential CO_(2) saving by a FPV system with tracking is 135918.87 t CO_(2) and it is 12.5%higher than that of a fixed-mount FPV system.
文摘The recent proliferation of wind turbines has revealed problems in their vulnerability under different site conditions, as evidenced by recent collapses of wind towers after severe actions. Analyses of structures subjected to variable actions can be conducted through several methods with different accuracy levels. Nonlinear dynamics is the most reliable among such methods. This study develops a numerical procedure to obtain approximate solutions for rigid-plastic responses of structures subjected to base harmonic pulses. The procedure's model is applied to a wind turbine tower subjected to inertial forces generated by harmonic ground acceleration, and failure is assumed to depend on the formation of shear hinges. The proposed approach provides an efficient representation of the post-elastic behavior of the structure, has a low computational cost and high effectiveness, and uses a limited number of mechanical parameters.
基金M.F.,A.C.and S.P.acknowledge the Italian Ministry of Education,University and Research(MIUR)(Grants ARS01-01384-PROSCAN and PRIN 201720177TTP3S).A.R.C.acknowledges the support from PON-AIM 1849854-1.
文摘Poromechanics plays a key role in modelling hard and soft tissue behaviours,by providing a thermodynamic framework in which chemo-mechanical mutual interactions among fluid and solid constituents can be consistently rooted,at different scale levels.In this context,how different biological species(including cells,extra-cellular components and chemical metabolites)interplay within complex environments is studied for characterizing the mechanobiology of tumor growth,governed by intra-tumoral residual stresses that initiate mechanotransductive processes deregulating normal tissue homeostasis and leading to tissue remodelling.Despite the coupling between tumor poroelasticity and interspecific competitive dynamics has recently highlighted how microscopic cells and environment interactions influence growth-associated stresses and tumor pathophysiology,the nonlinear interlacing among biochemical factors and mechanics somehow hindered the possibility of gaining qualitative insights into cells dynamics.Motivated by this,in the present work we recover the linear poroelasticity in order to benefit of a reduced complexity,so first deriving the well-known Lyapunov stability criterion from the thermodynamic dissipation principle and then analysing the stability of the mechanical competition among cells fighting for common space and resources during cancer growth and invasion.At the end,the linear poroelastic model enriched by interspecific dynamics is also exploited to show how growth anisotropy can alter the stress field in spherical tumor masses,by thus indirectly affecting cell mechano-sensing.