Urban and community forestry is a specialized discipline focused on the meticulous management of trees and forests within urban,suburban,and town environments.This field often entails extensive civic involvement and c...Urban and community forestry is a specialized discipline focused on the meticulous management of trees and forests within urban,suburban,and town environments.This field often entails extensive civic involvement and collaborative partnerships with institutions.Its overarching objectives span a spectrum from preserving water quality,habitat,and biodiversity to mitigating the Urban Heat Island(UHI)effect.The UHI phenomenon,characterized by notably higher temperatures in urban areas compared to rural counterparts due to heat absorption by urban infrastructure and limited urban forest coverage,serves as a focal point in this study.The study focuses on developing a methodological framework that integrates Geographically Weighted Regression(GWR),Random Forest(RF),and Suitability Analysis to assess the Urban Heat Island(UHI)effect across different urban zones,aiming to identify areas with varying levels of UHI impact.The framework is designed to assist urban planners and designers in understanding the spatial distribution of UHI and identifying areas where urban forestry initiatives can be strategically implemented to mitigate its effect.Conducted in various London areas,the research provides a comprehensive analysis of the intricate relationship between urban and community forestry and UHI.By mapping the spatial variability of UHI,the framework offers a novel approach to enhancing urban environmental design and advancing urban forestry studies.The study’s findings are expected to provide valuable insights for urban planners and policymakers,aiding in creating healthier and more livable urban environments through informed decision-making in urban forestry management.展开更多
Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,Nort...Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.展开更多
Tiger nut(Cyperus esculentus L.)is an ideal raw material for oil extraction,but starch-rich tiger nut meal,a by-product of oil extraction,has not been fully utilized.For this,starch was isolated from tiger nut meal,an...Tiger nut(Cyperus esculentus L.)is an ideal raw material for oil extraction,but starch-rich tiger nut meal,a by-product of oil extraction,has not been fully utilized.For this,starch was isolated from tiger nut meal,and then starch nanoparticles were prepared by gelatinization,ultrasonication and nanoprecipitation under different conditions.The preparation parameters were optimized by measuring the particle size with dynamic light scattering,and the physicochemical properties of native starch and nano starch were evaluated.The results showed that,compared to native starch,starch nanoparticle(nano starch)has a higher amylose content(39.05%),solubility(56.13%),and swelling power(58.01%).Furthermore,native starch and nano starch were esterified with octenyl succinic anhydride(OSA),respectively,conferring amphiphilic properties.The effects of OSA modification on the resistant starch content,thermal properties,and microstructure of starches were characterized.The resistant starch content of tiger nut native starch increased by 10.81%after OSA modification,while the resistant starch content of OSA nano starch increased to 37.76%.Compared to native starch,the gelatinization temperature of OSA nano starch decreased by 2.7℃ and nano starch decreased by 5.68℃.OSA modified nano starch showed a unique microstructure,such as a slender fiber structure and a regular oblate structure.The hydrophobic OSA groups aggregated to form hydrophobic cavities with a hydrophilic surface in the aqueous phase.The findings presented in this investigation provide a better understanding of the design and development of OSA nano starch and provide valuable guidance to further enhance the added value of tiger nuts and future applications in the food industry.展开更多
Social parasitic Hymenopterans have evolved morphological, chemical, and behavioral adaptations to overcome the sophisticated recognition and defense systems of their social host to invade host nests and exploit their...Social parasitic Hymenopterans have evolved morphological, chemical, and behavioral adaptations to overcome the sophisticated recognition and defense systems of their social host to invade host nests and exploit their worker force. In bumblebees, so- cial parasitism appeared in at least 3 subgenera independently: in the subgenus Psithyrus consisting entirely of parasitic species, in the subgenus Alpinobombus with Bombus hy- perboreus, and in the subgenus Thoracobombus with B. inexspectatus. Cuckoo bumblebee males utilize species-specific cephalic labial gland secretions for mating purposes that can impact their inquiline strategy. We performed cephalic labial gland secretions in B. hyperboreus, B. inexspectatus and their hosts. Males of both parasitic species exhibited high species specific levels of cephalic gland secretions, including different main com- pounds. Our results showed no chemical mimicry in the cephalic gland secretions between inquilines and their host and we did not identify the repellent compounds already known in other cuckoo bumblebees.展开更多
INTRODUCTION Project based learning(PBL)fully engages students in the subject area,promotes teamwork,transdisciplinary collaboration,allows student teams to engage and solve community design problems and can ultimatel...INTRODUCTION Project based learning(PBL)fully engages students in the subject area,promotes teamwork,transdisciplinary collaboration,allows student teams to engage and solve community design problems and can ultimately lead to broader student worldviews.PBL,however,presents significant curricular challenges,including project definition and meaningful student assessment.The authors began the process of exploring PBL through a National Science Foundation Transformation Undergraduate Education in Science,Technology,Engineering and Mathematics(TUES)award.The program was piloted for two semesters under the TUES award and has now completed its eighth semester overall operating as a special curricular track in parallel with an existing,traditional curricular program in Building Science.With four years of dedicated PBL program experience to inform their efforts,the authors are currently reworking the existing Building Science program curriculum to fully integrate a PBL capstone during the senior year while establishing a clear curricular path,creating a sound base of projects,and maintaining resource limits that include,but are not limited to,facilities,materials and personnel.In this paper,the authors discuss their successes and difficulties with imple-menting PBL in an undergraduate design and construction program by reviewing twelve years of both spontaneous and planned project based PBL experiences in an undergraduate design and construction program.展开更多
文摘Urban and community forestry is a specialized discipline focused on the meticulous management of trees and forests within urban,suburban,and town environments.This field often entails extensive civic involvement and collaborative partnerships with institutions.Its overarching objectives span a spectrum from preserving water quality,habitat,and biodiversity to mitigating the Urban Heat Island(UHI)effect.The UHI phenomenon,characterized by notably higher temperatures in urban areas compared to rural counterparts due to heat absorption by urban infrastructure and limited urban forest coverage,serves as a focal point in this study.The study focuses on developing a methodological framework that integrates Geographically Weighted Regression(GWR),Random Forest(RF),and Suitability Analysis to assess the Urban Heat Island(UHI)effect across different urban zones,aiming to identify areas with varying levels of UHI impact.The framework is designed to assist urban planners and designers in understanding the spatial distribution of UHI and identifying areas where urban forestry initiatives can be strategically implemented to mitigate its effect.Conducted in various London areas,the research provides a comprehensive analysis of the intricate relationship between urban and community forestry and UHI.By mapping the spatial variability of UHI,the framework offers a novel approach to enhancing urban environmental design and advancing urban forestry studies.The study’s findings are expected to provide valuable insights for urban planners and policymakers,aiding in creating healthier and more livable urban environments through informed decision-making in urban forestry management.
基金The authors would like to thank local farmers for their assistance with this research,particularly Ms.Amy Fiedler,owner of Springhouse Farm,and Ms.Holly Whitesides and Mr.Andy Bryant,owners of ATG Farm.The information contained in this paper is part of the research project entitled“Promoting Biomass Greenhouse Heating Systems”sponsored by the Bioenergy Research Initiative,NC Department of Agriculture and Consumer Services(Contract 17-078-4003).The authors thank all of the sponsors.
文摘Biomass energy generated from livestock manure,other agricultural by-products and food waste can be an affordable greenhouse-heating energy source for those seeking lower energy costs.Appalachian State University,North Carolina(NC),USA,has built a 6.1 m×9.1 m greenhouse,called the“Nexus”to test the integrated sustainable energy heating system for growing season extension with less energy cost.This is done by using on-farm biomass resources/wastes such as agricultural waste and wood chips to produce energy coupled with solar water heating to store and supplement required thermal inputs.Growing season extension with heated greenhouses increases the availability of local food throughout the year,expands available markets and increases farmers’profits.Nexus includes an above ground 5,680-L water storage tank and an aquaculture pond.It is supported by a small-scale pyrolysis system,an anaerobic digestion system,solar thermal and compost heating.The preliminary result showed that compared to a conventional space heating system,about 30%of energy was saved to keep the greenhouse temperature available for growing by radiation from the water storage tank.The main purpose of this study was to test the proposed greenhouse heating systems developed at Nexus by implementing pilot systems on two local farms.Pyrolysis and solar thermal system in conjunction with heat storage and delivery system for each farm were built and tested in order to demonstrate how to reduce greenhouse energy use.This paper describes the results of the case study,which showed significant energy savings that can promote the resource-limited farmers’interest.
基金supported by the Key Research and Development Projects of Zhejiang(No.2022C04021)Zhejiang Provincial Natural Science Foundation(No.LQ23C200013),China.
文摘Tiger nut(Cyperus esculentus L.)is an ideal raw material for oil extraction,but starch-rich tiger nut meal,a by-product of oil extraction,has not been fully utilized.For this,starch was isolated from tiger nut meal,and then starch nanoparticles were prepared by gelatinization,ultrasonication and nanoprecipitation under different conditions.The preparation parameters were optimized by measuring the particle size with dynamic light scattering,and the physicochemical properties of native starch and nano starch were evaluated.The results showed that,compared to native starch,starch nanoparticle(nano starch)has a higher amylose content(39.05%),solubility(56.13%),and swelling power(58.01%).Furthermore,native starch and nano starch were esterified with octenyl succinic anhydride(OSA),respectively,conferring amphiphilic properties.The effects of OSA modification on the resistant starch content,thermal properties,and microstructure of starches were characterized.The resistant starch content of tiger nut native starch increased by 10.81%after OSA modification,while the resistant starch content of OSA nano starch increased to 37.76%.Compared to native starch,the gelatinization temperature of OSA nano starch decreased by 2.7℃ and nano starch decreased by 5.68℃.OSA modified nano starch showed a unique microstructure,such as a slender fiber structure and a regular oblate structure.The hydrophobic OSA groups aggregated to form hydrophobic cavities with a hydrophilic surface in the aqueous phase.The findings presented in this investigation provide a better understanding of the design and development of OSA nano starch and provide valuable guidance to further enhance the added value of tiger nuts and future applications in the food industry.
文摘Social parasitic Hymenopterans have evolved morphological, chemical, and behavioral adaptations to overcome the sophisticated recognition and defense systems of their social host to invade host nests and exploit their worker force. In bumblebees, so- cial parasitism appeared in at least 3 subgenera independently: in the subgenus Psithyrus consisting entirely of parasitic species, in the subgenus Alpinobombus with Bombus hy- perboreus, and in the subgenus Thoracobombus with B. inexspectatus. Cuckoo bumblebee males utilize species-specific cephalic labial gland secretions for mating purposes that can impact their inquiline strategy. We performed cephalic labial gland secretions in B. hyperboreus, B. inexspectatus and their hosts. Males of both parasitic species exhibited high species specific levels of cephalic gland secretions, including different main com- pounds. Our results showed no chemical mimicry in the cephalic gland secretions between inquilines and their host and we did not identify the repellent compounds already known in other cuckoo bumblebees.
文摘INTRODUCTION Project based learning(PBL)fully engages students in the subject area,promotes teamwork,transdisciplinary collaboration,allows student teams to engage and solve community design problems and can ultimately lead to broader student worldviews.PBL,however,presents significant curricular challenges,including project definition and meaningful student assessment.The authors began the process of exploring PBL through a National Science Foundation Transformation Undergraduate Education in Science,Technology,Engineering and Mathematics(TUES)award.The program was piloted for two semesters under the TUES award and has now completed its eighth semester overall operating as a special curricular track in parallel with an existing,traditional curricular program in Building Science.With four years of dedicated PBL program experience to inform their efforts,the authors are currently reworking the existing Building Science program curriculum to fully integrate a PBL capstone during the senior year while establishing a clear curricular path,creating a sound base of projects,and maintaining resource limits that include,but are not limited to,facilities,materials and personnel.In this paper,the authors discuss their successes and difficulties with imple-menting PBL in an undergraduate design and construction program by reviewing twelve years of both spontaneous and planned project based PBL experiences in an undergraduate design and construction program.