High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor...High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor.The constructing heterostructure is one of the significant approaches in design strategies of sensing materials.This heterostructure effectively increases the active site for improving sensing performance and decreasing energy consumption.Herein,the heterostructure of Au nanoparticles modified CeO_(2)@carbon-quantum-dots(Au/CeO_(2)@CQDs) with a three-dimensional(3D) scaffold structure are successfully synthesized by an effective strategy,which can apply for preparing flexible gas sensor.The gas sensing properties of Au/CeO_(2)@CQDs based on flexible substrate are obtained under long-term repeated NO_(2) exposure at RT.Meanwhile,the long-term mechanical stability of this gas sensing device is also detected after different bending cycles.The Au/CeO_(2)@CQDs based on flexible substrate sensor exhibits excellent performance,including higher sensitivity(47.2),faster response(18 s)and recovery time(22 s) as well as longer-term stability than performance of pure materials.The obtained sensor also reveals outstanding mechanical flexibility,which is only a tiny response fluctuation(8.1%) after 500 bending/relaxing cycles.Therefore,our study demonstrates the enormous potential of this sensing materials for hazardous gas monitoring in future portable and wearable sensing platform.展开更多
An easy-to-implement method by which to fabricate superhydrophobic surfaces inspired taro leaf was successfully applied on316 L stainless steel via combining nanosecond laser(NL)processing and spin-coating techniques....An easy-to-implement method by which to fabricate superhydrophobic surfaces inspired taro leaf was successfully applied on316 L stainless steel via combining nanosecond laser(NL)processing and spin-coating techniques.The laser-textured surface composed of microscale frameworks and central bumps was fabricated by NL processing based on properly designed biomimetic patterns,and a layer of nanoscale carbon black/polydimethylsiloxane(CB/PDMS)particles was covered on it by spin-coating.The effect of pattern parameters(i.e.,the inscribed circle radius of framework and the radius of central bump)on wettability of biomimetic surface was investigated.All as-prepared biomimetic surfaces with micro-nano hierarchical structures showed excellent superhydrophobicity with the water contact angle of~155°and contact angle hysteresis of~2°.By comparing the untreated surface,the wetting behavior and evaporation mode of the biomimetic surface occurred an obvious transformation.Meanwhile,experiments indicated that the biomimetic surface not only had liquid-repelling and self-cleaning functions,but also maintained remarkable mechanical robustness and superhydrophobic durability.The method is efficient for fabricating biomimetic superhydrophobic surfaces applied to liquid-repelling,evaporation-transforming and self-cleaning fields.展开更多
基金financially supported by the Natural Science Foundation of Shandong Province (Nos. ZR2021QB136 and ZR2022MH091)the Innovation and Entrepreneurship Training Program for Undergraduates of Shandong Province (No.S202110439100)+2 种基金Tai'an Science and Technology Innovation Development Project (No.2021GX068)the Academic Promotion Program of Shandong First Medical University (No. 2019QL008)the Chinese Academy of Sciences。
文摘High-performance gas sensing materials operated at room temperature(RT) are attractive for a variety of real-time gas monitoring applications,especially with the excellent durability and flexibility of wearable sensor.The constructing heterostructure is one of the significant approaches in design strategies of sensing materials.This heterostructure effectively increases the active site for improving sensing performance and decreasing energy consumption.Herein,the heterostructure of Au nanoparticles modified CeO_(2)@carbon-quantum-dots(Au/CeO_(2)@CQDs) with a three-dimensional(3D) scaffold structure are successfully synthesized by an effective strategy,which can apply for preparing flexible gas sensor.The gas sensing properties of Au/CeO_(2)@CQDs based on flexible substrate are obtained under long-term repeated NO_(2) exposure at RT.Meanwhile,the long-term mechanical stability of this gas sensing device is also detected after different bending cycles.The Au/CeO_(2)@CQDs based on flexible substrate sensor exhibits excellent performance,including higher sensitivity(47.2),faster response(18 s)and recovery time(22 s) as well as longer-term stability than performance of pure materials.The obtained sensor also reveals outstanding mechanical flexibility,which is only a tiny response fluctuation(8.1%) after 500 bending/relaxing cycles.Therefore,our study demonstrates the enormous potential of this sensing materials for hazardous gas monitoring in future portable and wearable sensing platform.
基金the National Key Research and Development Program of China(Grant No.2019YFE0126300)the National Natural Science Foundation of China(Grant No.51775197)the Natural Science Foundation of Guangdong Province(Grant No.2019A1515011530)。
文摘An easy-to-implement method by which to fabricate superhydrophobic surfaces inspired taro leaf was successfully applied on316 L stainless steel via combining nanosecond laser(NL)processing and spin-coating techniques.The laser-textured surface composed of microscale frameworks and central bumps was fabricated by NL processing based on properly designed biomimetic patterns,and a layer of nanoscale carbon black/polydimethylsiloxane(CB/PDMS)particles was covered on it by spin-coating.The effect of pattern parameters(i.e.,the inscribed circle radius of framework and the radius of central bump)on wettability of biomimetic surface was investigated.All as-prepared biomimetic surfaces with micro-nano hierarchical structures showed excellent superhydrophobicity with the water contact angle of~155°and contact angle hysteresis of~2°.By comparing the untreated surface,the wetting behavior and evaporation mode of the biomimetic surface occurred an obvious transformation.Meanwhile,experiments indicated that the biomimetic surface not only had liquid-repelling and self-cleaning functions,but also maintained remarkable mechanical robustness and superhydrophobic durability.The method is efficient for fabricating biomimetic superhydrophobic surfaces applied to liquid-repelling,evaporation-transforming and self-cleaning fields.