A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition ...A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition of appropriate seismogenic sources and expected maximum magnitudes, the authors take into consideration the possibility of large subduction interface earthquakes of magnitude 8.0-9.0 beneath the Barbados accretionary prism via application of a characteristic model and slip rates. The analysis has been conducted using a standard logic-tree approach. Uniform hazard spectra have been calculated for the 5% of critical damping and the horizontal component of ground motion for rock site conditions setting 5 return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s. The disaggregation results suggest that the magnitude-distance pair that dominates the hazard yields M 7.4 and 8.6 and a distance of 42.5 km in the Interface Subduction Zone beneath Barbados for the 475 and 975 years RP (return period), respectively. An event with an M 8.0 at a distance of 107.5 km in the Intraplate Subduction Zone is the second scenario that dominates the hazard for both 475 and 975 years RP.展开更多
Merging all available databases, a comprehensive and updated earthquake catalogue for El Salvador and surrounding areas has been compiled, containing a total of 2,584 events for the period 1528-2009, covering the geog...Merging all available databases, a comprehensive and updated earthquake catalogue for El Salvador and surrounding areas has been compiled, containing a total of 2,584 events for the period 1528-2009, covering the geographic window delimited by the coordinates 11.0°-16.5° N and 85.5°-92.0° W, focal depths of 0.0 to 304 km, and the moment magnitudes in the interval 5.0 〈 Mw 〈 8.1. Events in the catalogue are distributed into six seismogenic sources taking into consideration the tectonic regime affecting E1 Salvador, the interplay and complexities between shallow crustal, intraplate and interface subduction seismicity has been thoroughly investigated, primarily with the aim of developing detail criteria to delimit the seismogenic sources in order to perform a consistent seismic hazard assessment. A uniform hazard spectrum for San Salvador and seismic hazard maps and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions using zone and zone free methods. The references cited in the article constitute a comprehensive list of sources of information on the tectonics and seismicity of El Salvador and neighboring Central American countries.展开更多
A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account t...A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.展开更多
The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the sur...The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.展开更多
文摘A new probabilistic seismic hazard analysis was performed for the city of Bridgetown, Barbados, West Indies. Hazard computations have been performed using the standard Cornell-McGuire approach based on the definition of appropriate seismogenic sources and expected maximum magnitudes, the authors take into consideration the possibility of large subduction interface earthquakes of magnitude 8.0-9.0 beneath the Barbados accretionary prism via application of a characteristic model and slip rates. The analysis has been conducted using a standard logic-tree approach. Uniform hazard spectra have been calculated for the 5% of critical damping and the horizontal component of ground motion for rock site conditions setting 5 return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s. The disaggregation results suggest that the magnitude-distance pair that dominates the hazard yields M 7.4 and 8.6 and a distance of 42.5 km in the Interface Subduction Zone beneath Barbados for the 475 and 975 years RP (return period), respectively. An event with an M 8.0 at a distance of 107.5 km in the Intraplate Subduction Zone is the second scenario that dominates the hazard for both 475 and 975 years RP.
文摘Merging all available databases, a comprehensive and updated earthquake catalogue for El Salvador and surrounding areas has been compiled, containing a total of 2,584 events for the period 1528-2009, covering the geographic window delimited by the coordinates 11.0°-16.5° N and 85.5°-92.0° W, focal depths of 0.0 to 304 km, and the moment magnitudes in the interval 5.0 〈 Mw 〈 8.1. Events in the catalogue are distributed into six seismogenic sources taking into consideration the tectonic regime affecting E1 Salvador, the interplay and complexities between shallow crustal, intraplate and interface subduction seismicity has been thoroughly investigated, primarily with the aim of developing detail criteria to delimit the seismogenic sources in order to perform a consistent seismic hazard assessment. A uniform hazard spectrum for San Salvador and seismic hazard maps and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions using zone and zone free methods. The references cited in the article constitute a comprehensive list of sources of information on the tectonics and seismicity of El Salvador and neighboring Central American countries.
文摘A probabilistic seismic hazard analysis was performed to generate seismic hazard maps for Jamaica. The analysis was then conducted using a standard logic-tree approach that allowed systematically taking into account the model-based (i.e., epistemic) uncertainty and its influence on the computed ground motion parameters. Hazard computations have been performed using a grid of sites with a space of 0.05 degrees. Two different computation methodologies have been adopted: the standard approach based on the definition of appropriate seismogenic sources and the zone-free approach, which overcomes the ambiguities related with the definition of the seismic sources solely reflecting the characteristics of the earthquake catalogue. A comprehensive and updated earthquake catalogue for Jamaica has been compiled for the years 1551-2010 and new empirical relationships amongst magnitudes Mze-Ms and Mw-mb have been developed for the region. Uniform hazard spectra and their uncertainty have been calculated for the horizontal component of ground motion for rock site conditions and five return periods (95, 475, 975, 2,475 and 4,975 years) and spectral accelerations for 34 structural periods ranging from 0 to 3 s, and 5% of critical damping. The spectral accelerations have been calculated to allow the definition of seismic hazard in Jamaica according to the International Building Code 2012. The disaggregation analysis for Kingston Metropolitan Area suggests that the magnitude-distance pair that contributes most to the hazard corresponds to events with M 7.8 and M 7.0 in the Enriquillo Plantain Garden Fault and the Jamaican Faults at a distance of 28 km and 18 km for short and long period structures respectively corresponding to 2,475 years return period. However, for long period structures, a substantial contribution is found for a M 8.2 at a distance of 198 km in the Oriente Fault Zone.
文摘The authors performed single mobile microtremor measurements at 218 sites at KMA (Kingston Metropolitan Area) with the objective of estimating the amplification effects due to the earthquake ground motion on the surface geology. The Fourier transform was applied to the most stationary parts of the triaxial wave motion recordings for each individual site and applied the traditional Nakamura technique, namely, the horizontal to vertical spectral ratio (H/V) to retrieve the predominant shear wave period of vibration of the soil profiles above the bedrock. The results yield predominant long periods of about 3.0-4.0 s in the port area and the waterfront, 1.0-2.0 s in the central part of Kingston, 0.3-1.0 s in Portmore and very stiff soil conditions in the surrounding area of the city. The results coincide fairly well with previous geological studies in the region, geotechnical data in boreholes, gravimetric measurements and strong motion recordings, suggesting a high degree of amplification of ground motion in the whole period range of engineering interest. Additionally, the authors obtained the liquefaction vulnerability factor Kg proposed by Nakamura based on the H/V ratio of microtremors. The results suggest that the port area, the waterfront and the Port Royal are highly susceptible to liquefaction. Finally, the authors obtained fundamental periods of vibration based on microtremor measurements on the roof and the basement of four important buildings in the KMA and indicated future lines of research employing ambient noise measurements on structures.