Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform f...Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
A design of ultrathin crystalline silicon solar cell with Si3 N4 circular truncated cone holes(CTCs)arrays on the top is proposed.In this article,we perform an optical simulation of the structure.The finite-difference...A design of ultrathin crystalline silicon solar cell with Si3 N4 circular truncated cone holes(CTCs)arrays on the top is proposed.In this article,we perform an optical simulation of the structure.The finite-difference time-domain method is used to calculate the optical absorption of different periods,radius of top and bottom circles and depth of Si3 N4 CTCs.The short-circuit current density generated by the optimized cells(30.17 mA/cm^2)is 32.44%more than the value gained by control group(with flat Si3 N4).Then adding a layer of back silver to allow us to better analyze optical absorption.Later,we simulate the optimization of the same configuration of different silicon thicknesses andfind that our structure does enhance the light absorption.This work uses a combined path towards achieving higher photocurrent ultrathin crystalline silicon solar cells by constructing the texture of anti-reflection coating.展开更多
基金The authors acknowledge support from the National Natural Science Foundation of China(Grant Nos.51902061 and 62090031).
文摘Lead halide perovskites have received considerable attention from researchers over the past several years due to their superior optical and optoelectronic properties,because of which they can be a versatile platform for fundamental science research and applications.Patterned structures based on lead halide perovskites have much more novel properties compared with their more commonly seen bulk-,micro-,and nano-crystals,such as improvement in antireflection,light-scattering effects,and light absorption,as a result of their adjustability of spatial distributions.However,there are many challenges yet to be resolved in this field,such as insufficient patterned resolution,imperfect crystal quality,complicated preparation process,and so on.To pave the way to solve these problems,we provide a systematic presentation of current methods for fabricating lead halide perovskite patterned structures,including thermal imprint,use of etching films,two-step vapor-phase growth,template-confined solution growth,and seed-assisted growth.Furthermore,the advantages and disadvantages of these methods are elaborated in detail.In addition,thanks to the extraordinary properties of lead halide perovskite patterned structures,a variety of potential applications in optics and optoelectronics of these structures are described.Lastly,we put forward existing challenges and prospects in this exciting field.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金Project supported by National Science Foundation of China(NSFC)(U1765105,61604087)The Hebei Provincial Young Top-notch Talent Support Program(BJRC2013)Alexander von Humboldt-Stiftung(AUS-1141939-HFST-E)
文摘A design of ultrathin crystalline silicon solar cell with Si3 N4 circular truncated cone holes(CTCs)arrays on the top is proposed.In this article,we perform an optical simulation of the structure.The finite-difference time-domain method is used to calculate the optical absorption of different periods,radius of top and bottom circles and depth of Si3 N4 CTCs.The short-circuit current density generated by the optimized cells(30.17 mA/cm^2)is 32.44%more than the value gained by control group(with flat Si3 N4).Then adding a layer of back silver to allow us to better analyze optical absorption.Later,we simulate the optimization of the same configuration of different silicon thicknesses andfind that our structure does enhance the light absorption.This work uses a combined path towards achieving higher photocurrent ultrathin crystalline silicon solar cells by constructing the texture of anti-reflection coating.