This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of t...This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.展开更多
The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point ...The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point eventually. Neither periodic excited source nor self-excited oscillation exists in such nonlinear dynamic circuits, so its solution cannot be treated as the synthesis of multiharmonic. And the other is that the endless vibration of phase point is limited within certain range, moreover possesses character of sustained oscillation, namely the bounded nonlinear oscillation. It can persistently and repeatedly vibration after dynamic variable entering into steady state;moreover the motion of phase point will not approach infinite at last;system has not stable equilibrium point. The motional trajectory can be described by a bounded space curve. So far, the curve cannot be represented by concretely explicit parametric form in math. It cannot be expressed analytically by human. The chaos is a most universally common form of bounded nonlinear oscillation. A number of chaotic systems, such as Lorenz equation, Chua’s circuit and lossless system in modern times are some examples among thousands of chaotic equations. In this work, basic properties related to the bounded space curve will be comprehensively summarized by analyzing these examples.展开更多
文摘This paper proves a power balance theorem of frequency domain. It becomes another circuit law concerning power conservation after Tellegen’s theorem. Moreover the universality and importance worth of application of the theorem are introduced in this paper. Various calculation of frequency domain in nonlinear circuit possess fixed intrinsic rule. There exists the mutual influence of nonlinear coupling among various harmonics. But every harmonic component must observe individually KCL, KVL and conservation of complex power in nonlinear circuit. It is a lossless network that the nonlinear conservative system with excited source has not dissipative element. The theorem proved by this paper can directly be used to find the main harmonic solutions of the lossless circuit. The results of solution are consistent with the balancing condition of reactive power, and accord with the traditional harmonic analysis method. This paper demonstrates that the lossless network can universally produce chaos. The phase portrait is related closely to the initial conditions, thus it is not an attractor. Furthermore it also reveals the difference between the attractiveness and boundedness for chaos.
文摘The qualitative solutions of dynamical system expressed with nonlinear differential equation can be divided into two categories. One is that the motion of phase point may approach infinite or stable equilibrium point eventually. Neither periodic excited source nor self-excited oscillation exists in such nonlinear dynamic circuits, so its solution cannot be treated as the synthesis of multiharmonic. And the other is that the endless vibration of phase point is limited within certain range, moreover possesses character of sustained oscillation, namely the bounded nonlinear oscillation. It can persistently and repeatedly vibration after dynamic variable entering into steady state;moreover the motion of phase point will not approach infinite at last;system has not stable equilibrium point. The motional trajectory can be described by a bounded space curve. So far, the curve cannot be represented by concretely explicit parametric form in math. It cannot be expressed analytically by human. The chaos is a most universally common form of bounded nonlinear oscillation. A number of chaotic systems, such as Lorenz equation, Chua’s circuit and lossless system in modern times are some examples among thousands of chaotic equations. In this work, basic properties related to the bounded space curve will be comprehensively summarized by analyzing these examples.