In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy requi...In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.展开更多
In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-w...In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.展开更多
This paper presents a solution to the test time minimization problem for core-based systems. We assume a hybrid BIST approach, where a test set is assembled, for each core, from pseudorandom test patterns that are gen...This paper presents a solution to the test time minimization problem for core-based systems. We assume a hybrid BIST approach, where a test set is assembled, for each core, from pseudorandom test patterns that are generated online, and deterministic test patterns that are generated off-line and stored in the system. In this paper we propose an iterative algorithm to find the optimal combination of pseudorandom and deterministic test sets of the whole system, consisting of multiple cores, under given memory constraints, so that the total test time is minimized. Our approach cmploys a fast estimation methodology in order to avoid exhaustive search and to speed-up the calculation process. Experimental results have shown the efficiency of the algorithm to find near optimal solutions.展开更多
This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the...This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.展开更多
文摘In this work we find a lower bound on the energy required for synchronizing moving sensor nodes in a Wireless Sensor Network (WSN) affected by large-scale fading, based on clock estimation techniques. The energy required for synchronizing a WSN within a desired estimation error level is specified by both the transmit power and the required number of messages. In this paper we extend our previous work introducing nodes’ movement and the average message delay in the total energy, including a comprehensive analysis on how the distance between nodes impacts on the energy and synchronization quality trade-off under large-scale fading effects.
文摘In this work, the existing trade-off between time synchronization quality and energy is studied for both large-scale and small-scale fading wireless channels. We analyze the clock offset estimation problem using one-way, two-way and N-way message exchange mechanisms affected by Gaussian and exponentially distributed impairments. Our main contribution is a general relationship between the total energy required for synchronizing a wireless sensor network and the clock offset estimation error by means of the transmit power, number of transmitted messages and average message delay, deriving the energy optimal lower bound as a function of the time synchronization quality and the number of hops in a multi-hop network.
基金Supported by the Estonian Science Foundation grants G6829 and G5910, Enterprise Estonia project Technology Development Centre ELIK0, and the Swedish Foundation for Strategic Research (SSF) under the Strategic Integrated Electronic Systems Research (STRINGENT) program.
文摘This paper presents a solution to the test time minimization problem for core-based systems. We assume a hybrid BIST approach, where a test set is assembled, for each core, from pseudorandom test patterns that are generated online, and deterministic test patterns that are generated off-line and stored in the system. In this paper we propose an iterative algorithm to find the optimal combination of pseudorandom and deterministic test sets of the whole system, consisting of multiple cores, under given memory constraints, so that the total test time is minimized. Our approach cmploys a fast estimation methodology in order to avoid exhaustive search and to speed-up the calculation process. Experimental results have shown the efficiency of the algorithm to find near optimal solutions.
文摘This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.