期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Investigation of the sodium storage mechanism of iron fluoride hydrate cathodes using X-ray absorption spectroscopy and mossbauer spectroscopy
1
作者 Ghulam Ali Muhammad Akbar +4 位作者 Faiza Jan Iftikhar Qamar Wali Beata Kalska Szostko Dariusz Satuła Kyung Yoon Chung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期535-542,I0014,共9页
Elucidation of a reaction mechanism is the most critical aspect for designing electrodes for highperformance secondary batteries.Herein,we investigate the sodium insertion/extraction into an iron fluoride hydrate(FeF_... Elucidation of a reaction mechanism is the most critical aspect for designing electrodes for highperformance secondary batteries.Herein,we investigate the sodium insertion/extraction into an iron fluoride hydrate(FeF_(3)·0.5H_(2)O)electrode for sodium-ion batteries(SIBs).The electrode material is prepared by employing an ionic liquid 1-butyl-3-methylimidazolium-tetrafluoroborate,which serves as a reaction medium and precursor for F^(-)ions.The crystal structure of FeF_(3)·0.5H_(2)O is observed as pyrochlore type with large open 3-D tunnels and a unit cell volume of 1129A^(3).The morphology of FeF_(3)·0.5H_(2)O is spherical shape with a mesoporous structure.The microstructure analysis reveals primary particle size of around 10 nm.The FeF_(3)·0.5H_(2)O cathode exhibits stable discharge capacities of 158,210,and 284 mA h g^(-1) in three different potential ranges of 1.5-4.5,1.2-4.5,and 1.0-4.5 V,respectively at 0.05 C rate.The specific capacities remained stable in over 50 cycles in all three potential ranges,while the rate capability was best in the potential range of 1.5-4.5 V.The electrochemical sodium storage mechanism is studied using X-ray absorption spectroscopy,indicating higher conversion at a more discharged state.Ex-situ M?ssbauer spectroscopy strengthens the results for reversible reduction/oxidation of Fe.These results will be favorable to establish high-performance cathode materials with selective voltage window for SIBs. 展开更多
关键词 Iron fluoride Sodium-ion batteries PYROCHLORE X-ray absorption spectroscopy Mössbauer spectroscopy
下载PDF
Fundamental Understanding and Optimization Strategies for Dual‑Ion Batteries:A Review 被引量:3
2
作者 Chong Chen Chun‑Sing Lee Yongbing Tang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期205-224,共20页
There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual... There has been increasing demand for high-energy density and longcycle life rechargeable batteries to satisfy the ever-growing requirements for nextgeneration energy storage systems.Among all available candidates,dual-ion batteries(DIBs)have drawn tremendous attention in the past few years from both academic and industrial battery communities because of their fascinating advantages of high working voltage,excellent safety,and environmental friendliness.However,the dynamic imbalance between the electrodes and the mismatch of traditional electrolyte systems remain elusive.To fully employ the advantages of DIBs,the overall optimization of anode materials,cathode materials,and compatible electrolyte systems is urgently needed.Here,we review the development history and the reaction mechanisms involved in DIBs.Afterward,the optimization strategies toward DIB materials and electrolytes are highlighted.In addition,their energy-related applications are also provided.Lastly,the research challenges and possible development directions of DIBs are outlined. 展开更多
关键词 Dual-ion batteries Reaction mechanisms Optimization strategies Energy storage
下载PDF
Zn-doped nickel iron(oxy)hydroxide nanocubes passivated by polyanions with high catalytic activity and corrosion resistance for seawater oxidation 被引量:1
3
作者 So Jung Kim Heechae Choi +12 位作者 Jeong Ho Ryu Kang Min Kim Sungwook Mhin Arpan Kumar Nayak Junghwan Bang Minyeong Je Ghulam Ali Kyung Yoon Chung Kyeong-Han Na Won-Youl Choi Sunghwan Yeo Jin Uk Jang HyukSu Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期82-92,I0004,共12页
Electrochemical water splitting to produce hydrogen fuel is a promising renewable energy-conversion technique.Large-scale electrolysis of freshwater may deplete water resources and cause water scarcity worldwide.Thus,... Electrochemical water splitting to produce hydrogen fuel is a promising renewable energy-conversion technique.Large-scale electrolysis of freshwater may deplete water resources and cause water scarcity worldwide.Thus,seawater electrolysis is a potential solution to the future energy and water crisis.In seawater electrolysis,it is critical to develop cost-effective electrocatalysts to split seawater without chloride corrosion.Herein,we present zinc-doped nickel iron(oxy)hydroxide nanocubes passivated by negatively charged polyanions(NFZ-PBA-S)that exhibits outstanding catalytic activity,stability,and selectivity for seawater oxidation.Zn dopants and polyanion-rich passivated surface layers in NFZ-PBA-S could effectively repel chlorine ions and enhance corrosion resistance,enabling its excellent catalytic activity and stability for seawater oxidation. 展开更多
关键词 Seawater splitting Oxygen evolution reaction Electrocatalyst Layered double hydroxide SULFIDATION
下载PDF
Efficient solar fuel production enabled by an iodide oxidation reaction on atomic layer deposited MoS_(2)
4
作者 Young Sun Park Gyumin Jang +12 位作者 Inkyu Sohn Hyungsoo Lee Jeiwan Tan Juwon Yun Sunihl Ma Jeongyoub Lee Chan Uk Lee Subin Moon Hayoung Im Seung-Min Chung Seungho Yu Hyungjun Kim Jooho Moon 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期200-214,共15页
Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynami... Oxygen evolution reaction(OER)as a half-anodic reaction of water splitting hinders the overall reaction efficiency owing to its thermodynamic and kinetic limitations.Iodide oxidation reaction(IOR)with low thermodynamic barrier and rapid reaction kinetics is a promising alternative to the OER.Herein,we present a molybdenum disulfide(MoS_(2))electrocatalyst for a high-efficiency and remarkably durable anode enabling IOR.MoS_(2)nanosheets deposited on a porous carbon paper via atomic layer deposition show an IOR current density of 10 mA cm^(–2)at an anodic potential of 0.63 V with respect to the reversible hydrogen electrode owing to the porous substrate as well as the intrinsic iodide oxidation capability of MoS_(2)as confirmed by theoretical calculations.The lower positive potential applied to the MoS_(2)-based heterostructure during IOR electrocatalysis prevents deterioration of the active sites on MoS_(2),resulting in exceptional durability of 200 h.Subsequently,we fabricate a two-electrode system comprising a MoS_(2)anode for IOR combined with a commercial Pt@C catalyst cathode for hydrogen evolution reaction.Moreover,the photovoltaic–electrochemical hydrogen production device comprising this electrolyzer and a single perovskite photovoltaic cell shows a record-high current density of 21 mA cm^(–2)at 1 sun under unbiased conditions. 展开更多
关键词 iodide oxidation reaction molybdenum sulfide photovoltaic-electrochemical hydrogen production solar hydrogen
下载PDF
Optimally arranged TiO_(2)@MoS_(2) heterostructures with effectively induced built-in electric field for high-performance lithium-sulfur batteries
5
作者 Jeongyoub Lee Changhoon Choi +12 位作者 Jung Been Park Seungho Yu Jinho Ha Hyungsoo Lee Gyumin Jang Young Sun Park Juwon Yun Hayoung Im Subin Moon Soobin Lee Jung-Il Choi Dong-Wan Kim Jooho Moon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期496-508,I0012,共14页
To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a st... To overcome the serious technological issues affecting lithium-sulfur(Li-S) batteries,such as sluggish sulfur redox kinetics and the detrimental shuttle effect,heterostructure engineering has been investigated as a strategy to effectively capture soluble lithium polysulfide intermediates and promote their conversion reaction by integrating highly polar metal oxides with catalytically active metals sulfides.However,to fully exploit the outstanding properties of heterostructure-based composites,their detailed structure and interfacial contacts should be designed rationally.Herein,optimally arranged TiO_(2)and MoS_(2)-based heterostructures(TiO_(2)@MoS_(2)) are fabricated on carbon cloth as a multifunctional interlayer to efficiently trap polysulfide intermediates and accelerate their redox kinetics.Owing to the synergistic effects between TiO_(2)and MoS_(2)and the uniform heterointerface distribution that induces the ideally oriented built-in electric field,Li-S batteries with TiO_(2)@MoS_(2)interlayers exhibit high rate capability(601 mA h g^(-1)at 5 C),good cycling stability(capacity-fade rate of 0.067% per cycle over 500 cycles at2 C),and satisfactory areal capacity(5.2 mA h cm^(-2)) under an increased sulfur loading of 5.2 mg cm^(-2).Moreover,by comparing with a MoS_(2)@TiO_(2)interlayer composed of reversely arranged heterostructures,the effect of the built-in electric field’s direction on the electrocatalytic reactions of polysulfide intermediates is thoroughly investigated for the first time.The superior electrocatalytic activities of the rationally arranged TiO_(2)@MoS_(2)interlayer demonstrate the importance of optimizing the built-in electric field of heterostructures for producing high-performance Li-S batteries. 展开更多
关键词 Lithium-sulfur batteries Shuttle effect TiO_(2)-MoS_(2)heterostructure engineering Built-in electric field Multifunctional interlayers
下载PDF
Reversible Zn/polymer heterogeneous anode
6
作者 Lingyun Xiong Hao Fu +5 位作者 Kai Yang Ji Young Kim Ren Ren Joong Kee Lee Woochul Yang Guicheng Liu 《Carbon Energy》 SCIE CSCD 2023年第6期82-91,共10页
Commercialization of Zn-metal anodes with low cost and high theoretical capacity is hindered by the poor reversibility caused by dendrites growth,side reactions,and the slow Zn^(2+)-transport and reaction kinetics.Her... Commercialization of Zn-metal anodes with low cost and high theoretical capacity is hindered by the poor reversibility caused by dendrites growth,side reactions,and the slow Zn^(2+)-transport and reaction kinetics.Herein,a reversible heterogeneous electrode of Zn-nanocrystallites/polyvinylphosphonic acrylamide(Zn/PPAm)with fast electrochemical kinetics is designed for the first time:phosphonic acid groups with strong polarity and chelation effect ensure structural reversibility and stability of the threedimensional Zn-storage-host PPAm network and the Zn/PPAm hybrid;hydrophobic carbon chains suppress side reactions such as hydrogen evolution and corrosion;weak electron-donating amide groups constitute Zn^(2+)-transport channels and promote“desolvation”and“solvation”effects of Zn^(2+)by dragging the PPAm network on the Zn-metal surface to compress/stretch during Zn plating/stripping,respectively;and the heterostructure and Zn nanocrystallites suppress dendrite growth and enhance electrochemical reactivity,respectively.Thus,the Zn/PPAm electrode shows cycle reversibility of over 6000 h with a hysteresis voltage as low as 31 mV in symmetrical cells and excellent durability and flexibility in fiber-shaped batteries. 展开更多
关键词 dendrite-free electrode process kinetics fiber-shaped battery reversible metal/polymer heterostructure Zn-metal anode
下载PDF
Non-Fullerene-Based Inverted Organic Photovoltaic Device with Long-Term Stability
7
作者 Do Hui Kim Febrian T.A.Wibowo +4 位作者 Dongchan Lee Narra V.Krishna Sujung Park Shinuk Cho Sung-Yeon Jang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期214-221,共8页
In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.... In this work,we developed the PM6:Y6-based inverted structure organic photovoltaic(i-OPV)with improved power conversion efficiency(PCE)and long-term stability by resolving the origins of the performance deterioration.The deep defects between the metal oxide-based electron transport layer and bulk-heterojunction photoactive layer interface were responsible for suboptimal PCE and facilitated degradation of devices.While the density of deep traps is increased during the storage of i-OPV,the penetrative oxygen-containing defects additionally generated shallow traps below the band-edge of Y6,causing an additional loss in the open-circuit voltage.The suppression of interfacial defects by chemical modification effectively improved the PCE and long-term stability of i-OPV.The modified i-OPV(mi-OPV)achieved a PCE of 17.42%,which is the highest value among the reported PM6:Y6-based i-OPV devices.Moreover,long-term stability was significantly improved:~90%and~80%retention of its initial PCE after 1200 h of air storage and illumination,respectively. 展开更多
关键词 deep trap inverted structure long-term stability organic photovoltaic power conversion efficiency
下载PDF
Enhanced charge separation by interchain hole delocalization in nonfullerene acceptor-based bulk heterojunction materials
8
作者 Chang-Mok Oh Sujung Park +3 位作者 Jihoon Lee Sung Heum Park Shinuk Cho In-Wook Hwang 《Carbon Energy》 SCIE CSCD 2023年第7期27-37,共11页
Bulk heterojunction(BHJ)composites show improved power conversion efficiencies when optimized in terms of morphology using various film processing methods.A reduced carrier recombination loss in an optimized BHJ was c... Bulk heterojunction(BHJ)composites show improved power conversion efficiencies when optimized in terms of morphology using various film processing methods.A reduced carrier recombination loss in an optimized BHJ was characterized previously.However,the driving force that leads to this reduction was not clearly understood.In this study,we focus on the decreased carrier recombination loss and its driving force in optimized nonfullerene acceptor-based PTB7-Th:IEICO-4F BHJ composites.We demonstrate that the optimized BHJ shows deactivation in the sub-nanosecond nongeminate carrier recombination process.The driving force for this deactivation was determined to be the improved interchain hole delocalization between the polymers.An enhanced interchain hole delocalization was observed using steady-state photoinduced absorption(PIA)spectroscopy.In particular,increased splitting between the polaron PIA bands was noted.Moreover,improved interchain hole delocalization was observed for other state-of-the-art BHJ materials,including D18:Y6 with optimized morphologies. 展开更多
关键词 bulk heterojunction interchain hole delocalization nonfullerene acceptor photoinduced absorption spectroscopy solar cell
下载PDF
Superionic Conductivity in Ceria‑Based Heterostructure Composites for Low‑Temperature Solid Oxide Fuel Cells 被引量:2
9
作者 Yifei Zhang Jingjing Liu +7 位作者 Manish Singh Enyi Hu Zheng Jiang Rizwan Raza Faze Wang Jun Wang Fan Yang Bin Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期264-283,共20页
Ceria-based heterostructure composite(CHC)has become a new stream to develop advanced low-temperature(300–600°C)solid oxide fuel cells(LTSOFCs)with excellent power outputs at 1000 mW cm−2 level.The state-ofthe-a... Ceria-based heterostructure composite(CHC)has become a new stream to develop advanced low-temperature(300–600°C)solid oxide fuel cells(LTSOFCs)with excellent power outputs at 1000 mW cm−2 level.The state-ofthe-art ceria–carbonate or ceria–semiconductor heterostructure composites have made the CHC systems significantly contribute to both fundamental and applied science researches of LTSOFCs;however,a deep scientific understanding to achieve excellent fuel cell performance and high superionic conduction is still missing,which may hinder its wide application and commercialization.This review aims to establish a new fundamental strategy for superionic conduction of the CHC materials and relevant LTSOFCs.This involves energy band and built-in-field assisting superionic conduction,highlighting coupling effect among the ionic transfer,band structure and alignment impact.Furthermore,theories of ceria–carbonate,e.g.,space charge and multi-ion conduction,as well as new scientific understanding are discussed and presented for functional CHC materials. 展开更多
关键词 Ceria-based heterostructure composite Ceria–semiconductor Energy band Built-in field Solid oxide fuel cell
下载PDF
Stable Zn Metal Anodes with Limited Zn-Doping in MgF_(2) Interphase for Fast and Uniformly Ionic Flux 被引量:1
10
作者 Ji Young Kim Guicheng Liu +3 位作者 Ryanda Enggar Anugrah Ardhi Jihun Park Hansung Kim Joong Kee Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第3期169-183,共15页
The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these probl... The practical applications of aqueous Zn metal batteries are currently restricted by the inherent drawbacks of Zn such as the hydrogen evolution reaction,sluggish kinetics,and dendrite formation.To address these problems,herein,a limitedly Zn-doped MgF_(2)interphase comprising an upper region of pure,porous MgF_(2)and a lower region of gradient Zn-doped MgF_(2)is achieved via radio frequency sputtering technique.The porous MgF_(2)region is a polar insulator whose high corrosion resistance facilitates the de-solvation of the solvated Zn ions and suppression of hydrogen evolution,resulting in Zn metal electrodes with a low interfacial resistance.The Zn-doped MgF_(2)region facilitates fast transfer kinetics and homogeneous deposition of Zn ions owing to the interfacial polarization between the Zn dopant and MgF_(2)matrix,and the high concentration of the Zn dopant on the surface of the metal substrate as fine nuclei.Consequently,a symmetric cell incorporating the proposed Zn metal exhibits low overpotentials of~27.2 and~99.7 mV without Zn dendrites over 250 to 8000 cycles at current densities of 1.0 and 10.0 mA cm−2,respectively.The developed Zn/MnO2 full cell exhibits superior capacity retentions of 97.5%and 84.0%with average Coulombic efficiencies of 99.96%after 1000 and 3000 cycles,respectively. 展开更多
关键词 Zinc metal battery MgF_(2)layer Limited zinc doping Ion-transfer kinetic Deposition guidance
下载PDF
Effect of Co-Deposited Iron on Microstructures and Properties of Electroplated Nanocrystalline Nickel-Iron Alloys
11
作者 Myung Hwan Byun Jin Woo Cho Beom Suck Han Young Keun Kim Yo Seung Song 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z1期94-99,共6页
Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electroplating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in t... Nickel-iron nanocrystalline alloys with different compositions and grain sizes were fabricated by electroplating for MEMS devices. The iron content of the deposits was changed by varying the nickel/iron ion ratio in the electrolyte. X-ray diffraction (XRD) analysis was applied for measuring the strength of the texture and grain size of the deposits. The nickel/iron atom ratio of the deposits was analyzed by EDS. The hardness of the alloys was evaluated by Vickers hardness indenter. The internal stress of the deposits was measured by thin film stress measurement using Stoney's formula. Surface morphology and roughness were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Hardness and internal stress mechanism of the electroplated structure as a function of Fe ion content and current density were revealed. With increasing the iron content, the hardness and internal stress of the deposits increase. An excellent correlation between the increase in the internal stress and the loss of (200) texture were found. 展开更多
关键词 MEMS ELECTROPLATING NANOCRYSTALLINE nickel-iron alloy grain size internal stress HARDNESS ROUGHNESS
下载PDF
Correction to:Stable Zn Metal Anodes with Limited Zn-Doping in MgF2 Interphase for Fast and Uniformly Ionic Flux
12
作者 Ji Young Kim Guicheng Liu +3 位作者 Ryanda Enggar Anugrah Ardhi Jihun Park Hansung Kim Joong Kee Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第4期289-289,共1页
In the original version of the article affiliation 1 has been missed out for an author and affiliation 1 superscript has been added in this correction.The Original article has been corrected.Joong Kee Lee1,5Open Acces... In the original version of the article affiliation 1 has been missed out for an author and affiliation 1 superscript has been added in this correction.The Original article has been corrected.Joong Kee Lee1,5Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s)and the source,provide a link to the Creative Commons licence,and indicate if changes were made. 展开更多
关键词 CREATIVE Open app
下载PDF
Semiconductor Electrochemistry for Clean Energy Conversion and Storage
13
作者 Bin Zhu Liangdong Fan +7 位作者 Naveed Mushtaq Rizwan Raza Muhammad Sajid Yan Wu Wenfeng Lin Jung‑Sik Kim Peter D.Lund Sining Yun 《Electrochemical Energy Reviews》 SCIE EI 2021年第4期757-792,共36页
Semiconductors and the associated methodologies applied to electrochemistry have recently grown as an emerging field in energy materials and technologies.For example,semiconductor membranes and heterostructure fuel ce... Semiconductors and the associated methodologies applied to electrochemistry have recently grown as an emerging field in energy materials and technologies.For example,semiconductor membranes and heterostructure fuel cells are new technological trend,which differ from the traditional fuel cell electrochemistry principle employing three basic functional components:anode,electrolyte,and cathode.The electrolyte is key to the device performance by providing an ionic charge flow pathway between the anode and cathode while preventing electron passage.In contrast,semiconductors and derived heterostructures with electron(hole)conducting materials have demonstrated to be much better ionic conductors than the conventional ionic electrolytes.The energy band structure and alignment,band bending and built-in electric field are all important elements in this context to realize the necessary fuel cell functionalities.This review further extends to semiconductor-based electrochemical energy conversion and storage,describing their fundamentals and working principles,with the intention of advancing the understanding of the roles of semiconductors and energy bands in electrochemical devices for energy conversion and storage,as well as applications to meet emerging demands widely involved in energy applications,such as photocatalysis/water splitting devices,batteries and solar cells.This review provides new ideas and new solutions to problems beyond the conventional electrochemistry and presents new interdisciplinary approaches to develop clean energy conversion and storage technologies. 展开更多
关键词 Semiconductor electrochemistry Fuel cells Lithium-ion batteries Solar cells Built-in electric field Energy system integration
下载PDF
Novel LaFe_(2)O_(4)spinel structure with a large oxygen reduction response towards protonic ceramic fuel cell cathode 被引量:1
14
作者 Jinping Wang Yuzheng Lu +4 位作者 Naveed Mushtaq M.A.K Yousaf Shah Sajid Rauf Peter D.Lund Muhammad Imran Asghar 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期413-421,I0004,共10页
Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a nov... Highly active and stable electrocatalysts are mandatory for developing high-performance and longlasting fuel cells.The current study demonstrates a high oxygen reduction reaction(ORR)electrocatalytic activity of a novel spinel-structured LaFe_(2)O_(4)via a self-doping strategy.The LaFe_(2)O_(4)demonstrates excellent ORR activity in a protonic ceramic fuel cell(PCFC)at temperature range of 350-500℃.The high ORR activity of LaFe_(2)O_(4)is mainly attributed to the facile release of oxide and proton ions,and improved synergistic incorporation abilities associated with interplay of multivalent Fe^(3+)/Fe^(2+)and La^(3+)ions.Using LaFe_(2)O_(4)as cathode over proton conducting BaZr_(0.4)Ce_(0.4)Y_(0.2)O_(3)(BZCY)electrolyte,the fuel cell has delivered a high-power density of 806 mW/cm^(2)operating at 500℃.Different spectroscopic and calculations methods such as UV-visible,Raman,X-ray photoelectron spectroscopy and density functional theory(DFT)calculations were performed to screen the potential application of LaFe_(2)O_(4)as cathode.This study would help in developing functional cobalt-free ORR electrocatalysts for low temperature-PCFCs(LT-PCFCs)and solid oxide fuel cells(SOFCs)applications. 展开更多
关键词 LaFe_(2)O_(4)cathode Facile Fe^(3+/2+)ions resale Oxygen reductionreaction(ORR) Excellent electrocatalyst Protonic ceramicfuel cell(PCFC) Rare earths
原文传递
Proton transport controlled at surface layer of CeO_(2) by gradient-doping with a built-in-field effect
15
作者 Yuzheng Lu Naveed Mushtaq +3 位作者 M.A.K Yousaf Shah Sajid Rauf Chen Xia Bin Zhu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第12期2025-2032,I0008,共9页
Ceramic fuel cells hold an important position for the sustainable energy future using renewable energy sources with high efficiency.The design and synthesis of active materials,interface engineering and having capabil... Ceramic fuel cells hold an important position for the sustainable energy future using renewable energy sources with high efficiency.The design and synthesis of active materials,interface engineering and having capability of low operating temperature is considered as an important factor to further increase the power output and stability of ceramic fuel cell devices.A novel methodology has vital importance to develop new functionalities of existing materials by introducing new different effects.The built-in electric field(BIEF) is one of the most recently used approaches to improve charge transfer and ionic conductivity of solid oxide materials.Herein,we demonstrate gradient doping strategy in CeO_(2)-δstructure to produce BIEF effect and to modulate the proton transport effectively at the surface layer rather than bulk structure.The inclusions of La and Sr metal ions at the surface and Co-metal ions into bulk-layer of CeO_(2)form the gradiently doped structure.The gradient doping into CeO_(2)highly improves the proton transport properties through the surface layer by modifying the energy levels.Moreover,unbalanced charge distribution due to gradient doping produces built-in electric-field to provide extra driving force for protons transport through surface layer.The acquired gradiently doped fluorite structure exhibits remarkable proton conductivity of>0.2 S/cm,as a result ceramic fuel cell shows power output of>1000 mW/cm2while operating at 500℃.This unique work highlights the critical role of gradiently doped electrolyte in electrochemical conversion energy devices and offers new understanding and practices for sustainable energy future. 展开更多
关键词 La_(0.20)Sr_(0.05)Ce_(0.65)Co_(0.1)0_(2-δ)(LSCC) Gradient doping Fast protonic transport High grain boundary conduction Built-in electric field Rare earths
原文传递
Interfacial Modification,Electrode/Solid‑Electrolyte Engineering,and Monolithic Construction of Solid‑State Batteries
16
作者 Qirong Liu Qiqi Chen +1 位作者 Yongbing Tang Hui‑Ming Cheng 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期320-356,共37页
Solid-state lithium-metal batteries(SLMBs)have been regarded as one of the most promising next-generation devices because of their potential high safety,high energy density,and simple packing procedure.However,the pra... Solid-state lithium-metal batteries(SLMBs)have been regarded as one of the most promising next-generation devices because of their potential high safety,high energy density,and simple packing procedure.However,the practical applications of SLMBs are restricted by a series of static and dynamic interfacial issues,including poor interfacial contact,(electro-)chemical incompatibility,dynamic Li dendrite penetration,etc.In recent years,considerable attempts have been made to obtain mechanistic insight into interfacial failures and to develop possible strategies towards excellent interfacial properties for SLMBs.The static and dynamic failure mechanisms at interfaces between solid electrolytes(SEs)and electrodes are comprehensively summarized,and design strategies involving interfacial modification,electrode/SE engineering,and the monolithic construction of SLMBs are discussed in detail.Finally,possible research methodologies such as theoretical calcu-lations,advanced characterization techniques,and versatile design strategies are provided to tackle these interfacial problems. 展开更多
关键词 Solid-state batteries Interfacial issues Interfacial modification Electrode/solid-electrolyte engineering Monolithic construction
下载PDF
Friction characteristics of mechanically exfoliated and CVD-grown single-layer MoS_2 被引量:9
17
作者 Dinh Le Cao KY Bien-Cuong TRAN KHAC +2 位作者 Chinh Tam LE Yong Soo KIM Koo-Hyun CHUNG 《Friction》 SCIE CSCD 2018年第4期395-406,共12页
In this work, the friction characteristics of single-layer MoS_2 prepared with chemical vapor deposition(CVD) at three different temperatures were quantitatively investigated and compared to those of single-layer MoS_... In this work, the friction characteristics of single-layer MoS_2 prepared with chemical vapor deposition(CVD) at three different temperatures were quantitatively investigated and compared to those of single-layer MoS_2 prepared using mechanical exfoliation. The surface and crystalline qualities of the MoS_2 specimens were characterized using an optical microscope, atomic force microscope(AFM), and Raman spectroscopy. The surfaces of the MoS2 specimens were generally flat and smooth. However, the Raman data showed that the crystalline qualities of CVD-grown single-layer MoS2 at 800 °C and 850 °C were relatively similar to those of mechanically exfoliated MoS2 whereas the crystalline quality of the CVD-grown single-layer MoS_2 at 900 °C was lower. The CVD-grown single-layer MoS_2 exhibited higher friction than mechanically exfoliated single-layer MoS_2, which might be related to the crystalline imperfections in the CVD-grown MoS_2. In addition, the friction of CVD-grown single-layer MoS_2 increased as the CVD growth temperature increased. In terms of tribological properties, 800 °C was the optimal temperature for the CVD process used in this work. Furthermore, it was observed that the friction at the grain boundary was significantly larger than that at the grain, potentially due to defects at the grain boundary. This result indicates that the temperature used during CVD should be optimized considering the grain size to achieve low friction characteristics. The outcomes of this work will be useful for understanding the intrinsic friction characteristics of single-layer MoS2 and elucidating the feasibility of single-layer MoS_2 as protective or lubricant layers for micro- and nano-devices. 展开更多
关键词 化学气相沉积 摩擦性能 摩擦学 机械剥离法
原文传递
Direct vapor phase growth process and robust photoluminescence properties of large area MoS2 layers 被引量:6
18
作者 V. Senthilkumar Le C. Tam +3 位作者 Yong Soo Kim Yumin Sim Maeng-Je Seong Joon. I. Jang 《Nano Research》 SCIE EI CAS CSCD 2014年第12期1759-1768,共10页
在那里在收获设备的光电子和精力的领域里在铝二硫化物的使用一直在种研究兴趣,由它的 indirect-to-direct 乐队差距 tunability 的优点。然而,获得大区域瞬间的薄电影 < 潜水艇 class= “ a-plus-plus ” > 为未来设备应用的 2... 在那里在收获设备的光电子和精力的领域里在铝二硫化物的使用一直在种研究兴趣,由它的 indirect-to-direct 乐队差距 tunability 的优点。然而,获得大区域瞬间的薄电影 < 潜水艇 class= “ a-plus-plus ” > 为未来设备应用的 2 </sub> 仍然是挑战。在现在的学习,先锋的数量(S 和哞 < 潜水艇 class= “ a-plus-plus ” > 3 </sub>) 系统地被改变以便优化高度水晶、大的区域瞬间的生长 < 潜水艇 class= “ a-plus-plus ” > 由化学蒸汽免职方法的 2 </sub> 层。先锋的数量的小心的控制在大区域的合成被发现到关键因素高度水晶的薄片。层的厚度被拉曼光谱学和原子力量显微镜学证实。光性质和化学作文被光致发光(PL ) 和 X 光检查光电子光谱学学习。在 1.82 eV 的强壮的直接激子的排出物的出现(A 激子,与 55 个 thout 事件的规范的 PL 紧张[1.84 ??? 隰酐鱠? 鎄颩 ???? 頿?? 鲰?? 展开更多
关键词 化学气相沉积法 光致发光性质 MOS2 生长过程 面积 X射线光电子能谱 过渡金属硫化物 光电子能量
原文传递
Superhydrophobic Flexible Supercapacitors Formed by Integrating Hydrogel with Functional Carbon Nanomaterials 被引量:4
19
作者 Peng Wang Ximin Zhang +3 位作者 Wei Duan Wei Teng Yibing Liu Qing Xie 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第5期1153-1158,共6页
With the rapid development of the wearable electronics,the flexible supercapacitor with high energy density has attracted more and more attentions.From the viewpoint of outdoor and underwater application,this research... With the rapid development of the wearable electronics,the flexible supercapacitor with high energy density has attracted more and more attentions.From the viewpoint of outdoor and underwater application,this research tried to impart the superhydrophobicity to the flexible supercapacitors.The polyvinyl alcohol/HN0_(3) hydrogel was utilized as the electrolyte,which could achieve self-healing capability without the freezing/thawing process.Both microscale graphene and nanoscale carbon nanotubes were utilized as the electrode materials.After surface modification,the hydrophobic suspension composed of graphene and carbon nanotubes was sprayed onto the two sides of hydrogel electrolyte to construct superhydrophobic electrode.Hence,the superhydrophobicity endows the supercapacitor with outstanding self-cleaning performance.The all-in-one structure endows the supercapacitor with improved capacitive ability,outstanding flexibility,good anti-abrasion property,and reliable self-healing capability.The combination of superhydro-phobicity and flexible energy storage might have a broad application for the outdoor and underwater wearable electronics applications. 展开更多
关键词 SUPERCAPACITOR SUPERHYDROPHOBIC HYDROGEL SELF-HEALING Graphene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部