期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evaluation of Integer Programming Solvers to Improve the Efficiency of Individual Work Planning
1
作者 Keiichi Takahashi 《Open Journal of Modelling and Simulation》 2025年第1期51-64,共14页
This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digiti... This study proposes a novel approach to optimizing individual work schedules for book digitization using mixed-integer programming (MIP). By leveraging the power of MIP solvers, we aimed to minimize the overall digitization time while considering various constraints and process dependencies. The book digitization process involves three key steps: cutting, scanning, and binding. Each step has specific requirements and limitations such as the number of pages that can be processed simultaneously and potential bottlenecks. To address these complexities, we formulate the problem as a one-machine job shop scheduling problem with additional constraints to capture the unique characteristics of book digitization. We conducted a series of experiments to evaluate the performance of our proposed approach. By comparing the optimized schedules with the baseline approach, we demonstrated significant reductions in the overall processing time. In addition, we analyzed the impact of different weighting schemes on the optimization results, highlighting the importance of identifying and prioritizing critical processes. Our findings suggest that MIP-based optimization can be a valuable tool for improving the efficiency of individual work schedules, even in seemingly simple tasks, such as book digitization. By carefully considering specific constraints and objectives, we can save time and leverage resources by carefully considering specific constraints and objectives. 展开更多
关键词 Mixed Integer Programming Scheduling Optimization Work Planning Book Scanning Gantt Chart
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部