Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of ...Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.展开更多
Linked to major volcanic eruptions around 536 and 540 CE, the onset of the Late Antique Little Ice Age has been described as the coldest period of the past two millennia. The exact timing and spatial extent of this ex...Linked to major volcanic eruptions around 536 and 540 CE, the onset of the Late Antique Little Ice Age has been described as the coldest period of the past two millennia. The exact timing and spatial extent of this exceptional cold phase are, however, still under debate because of the limited resolution and geographical distribution of the available proxy archives. Here, we use 106 wood anatomical thin sections from 23forest sites and 20 tree species in both hemispheres to search for cell-level fingerprints of ephemeral summer cooling between 530 and 550 CE. After cross-dating and double-staining, we identified 89Blue Rings(lack of cell wall lignification), nine Frost Rings(cell deformation and collapse), and 93Light Rings(reduced cell wall thickening) in the Northern Hemisphere. Our network reveals evidence for the strongest temperature depression between mid-July and early-August 536 CE across North America and Eurasia, whereas more localised cold spells occurred in the summers of 532, 540–43, and548 CE. The lack of anatomical signatures in the austral trees suggests limited incursion of stratospheric volcanic aerosol into the Southern Hemisphere extra-tropics, that any forcing was mitigated by atmosphere-ocean dynamical responses and/or concentrated outside the growing season, or a combination of factors. Our findings demonstrate the advantage of wood anatomical investigations over traditional dendrochronological measurements, provide a benchmark for Earth system models, support cross-disciplinary studies into the entanglements of climate and history, and question the relevance of global climate averages.展开更多
基金funded by the Czech University of Life Sciences Prague(Internal Grant Agency:A_03_22-43110/1312/3101)the Czech Science(GACR 21-27454S)。
文摘Primary forests are spatially diverse terrestrial ecosystems with unique characteristics,being naturally regenerative and heterogeneous,which supports the stability of their carbon storage through the accumulation of live and dead biomass.Yet,little is known about the interactions between biomass stocks,tree genus diversity and structure across a temperate montane primary forest.Here,we investigated the relationship between tree structure(variability in basal area and tree size),genus-level diversity(abundance,tree diversity)and biomass stocks in temperate primary mountain forests across Central and Eastern Europe.We used inventory data from726 permanent sample plots from mixed beech and spruce across the Carpathian Mountains.We used nonlinear regression to analyse the spatial variability in forest biomass,structure,and genus-level diversity and how they interact with plot-level tree age,disturbances,temperature and altitude.We found that the combined effects of genus and structural indices were important for addressing the variability in biomass across different spatial scales.Local processes in disturbance regimes and uneven tree age support forest hete rogeneity and the accumulation of live and dead biomass through the natural regeneration,growth and decay of the forest ecosystem.Structural complexities in basal area index,supporte d by genus-level abundance,positively influence total biomass stocks,which was modulated by tree age and disturbances.Spruce forests showed higher tree density and basal area than mixed beech forests,though mixed beech still contributes significantly to biomass across landscapes.Forest heterogeneity was strongly influenced by complexities in forest composition(tree genus diversity,structure).We addressed the importance of primary forests as stable carbon stores,achieved through structure and diversity.Safeguarding such ecosystems is critical for ensuring the stability of the primary forest,carbon store and biodiversity into the future.
基金funding from the ERC Advanced Project MONOSTAR (Ad G 882727)funding from Sust ES: adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_0 19/0000797)+11 种基金funding from the Fritz & Elisabeth Schweingruber Foundation. Duncan A. Christie and Carlos Le Quesne received funding from the ANID (FONDECYT 1201411, 1221307, FONDAP 15110009, BASAL FB210018)funding from the Russian Science Foundation grant (RSF 21-17-00006)funding from NSF Arctic Social Science 2112314NSF Arctic Natural Science 2124885the NSF P2C2 (Paleo Perspectives on Climatic Change) program (various grants)funding from the Russian Science Foundation grant (RSF 21-1400330)funding from the Russian Science Foundation grant (RSF 18-14-00072P)supported by the Swedish Research Council (201801272)funding from the Swiss National Science Foundation through the SNSF Sinergia CALDERA project (CRSII5 183571)funding from the National Science Foundation’s P2C2 Program (1902625 and 1203749)the Malcolm H.Wiener Foundationfunded through NSF P2C2 Program (2002454)
文摘Linked to major volcanic eruptions around 536 and 540 CE, the onset of the Late Antique Little Ice Age has been described as the coldest period of the past two millennia. The exact timing and spatial extent of this exceptional cold phase are, however, still under debate because of the limited resolution and geographical distribution of the available proxy archives. Here, we use 106 wood anatomical thin sections from 23forest sites and 20 tree species in both hemispheres to search for cell-level fingerprints of ephemeral summer cooling between 530 and 550 CE. After cross-dating and double-staining, we identified 89Blue Rings(lack of cell wall lignification), nine Frost Rings(cell deformation and collapse), and 93Light Rings(reduced cell wall thickening) in the Northern Hemisphere. Our network reveals evidence for the strongest temperature depression between mid-July and early-August 536 CE across North America and Eurasia, whereas more localised cold spells occurred in the summers of 532, 540–43, and548 CE. The lack of anatomical signatures in the austral trees suggests limited incursion of stratospheric volcanic aerosol into the Southern Hemisphere extra-tropics, that any forcing was mitigated by atmosphere-ocean dynamical responses and/or concentrated outside the growing season, or a combination of factors. Our findings demonstrate the advantage of wood anatomical investigations over traditional dendrochronological measurements, provide a benchmark for Earth system models, support cross-disciplinary studies into the entanglements of climate and history, and question the relevance of global climate averages.