Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated ...Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated transmitter and receiver modules were demonstrated with biterror-rate (BER) performance of 10-s at 107 Gbit/s, and near error-free standard forward error correction (FEC) threshold (2 × 10 -3) at 112 Gbit/s. The experiment results showed that directly modulated high-speed ETDM transmission systems with the symbol rates at 100 Gbaud and beyond were promising candidate for cost-effective 100 GbE applications and might be a preform of the next generation of Terabit/s Ethernet.展开更多
Thin AlOx films were grown on 4H-SiC by plasma-assisted atomic layer deposition (ALD) and plasma assisted electron-beam evaporation at 300°C. After deposition, the films were annealed in nitrogen at temperatures ...Thin AlOx films were grown on 4H-SiC by plasma-assisted atomic layer deposition (ALD) and plasma assisted electron-beam evaporation at 300°C. After deposition, the films were annealed in nitrogen at temperatures between 500°C and 1050°C. The films were analyzed by X-ray reflectivity (XRR) and atomic force microscopy (AFM) in order to determine film thickness, surface roughness and density of the AlOx layer. No differences were found in the behavior of AlOx films upon annealing for the two different employed deposition techniques. Annealing results in film densification, which is most prominent above the crystallization temperature (800°C). In addition to the increasing density, a mass loss of ~5% was determined and attributed to the presence of aluminum oxyhydroxide in as deposited films. All changes in film properties after high temperature annealing appear to be independent of the deposition technique.展开更多
Photonic quantum technologies hold promise to repeat the success of integrated nanophotonic circuits in non-classical applications.Using linear optical elements,quantum optical computations can be performed with integ...Photonic quantum technologies hold promise to repeat the success of integrated nanophotonic circuits in non-classical applications.Using linear optical elements,quantum optical computations can be performed with integrated optical circuits and can therefore overcome the existing limitations in terms of scalability.In addition to passive optical devices for realizing photonic quantum gates,active elements,such as single-photon sources and single-photon detectors,are essential ingredients for future optical quantum circuits.Material systems that allow for the monolithic integration of all components are particularly attractive,including III-V semiconductors,silicon and diamond.Here,we demonstrate nanophotonic integrated circuits made from high-quality polycrystalline diamond thin films in combination with on-chip single-photon detectors.By using superconducting nanowires that are coupled evanescently to traveling waves,we achieve high detection efficiencies of up to 66%as well as low dark count rates and a timing resolution of 190 ps.Our devices are fully scalable and hold promise for functional diamond photonic quantum devices.展开更多
基金Supported by the European Committee6th Research Framework Program in the Project HECTO
文摘Traditional intensity modulated two-level electrical time-division multiplexing (ETDM) transmission systems working at 100 -112 Gbit/s were investigated. The complete ETDM systems based on monolithically integrated transmitter and receiver modules were demonstrated with biterror-rate (BER) performance of 10-s at 107 Gbit/s, and near error-free standard forward error correction (FEC) threshold (2 × 10 -3) at 112 Gbit/s. The experiment results showed that directly modulated high-speed ETDM transmission systems with the symbol rates at 100 Gbaud and beyond were promising candidate for cost-effective 100 GbE applications and might be a preform of the next generation of Terabit/s Ethernet.
文摘Thin AlOx films were grown on 4H-SiC by plasma-assisted atomic layer deposition (ALD) and plasma assisted electron-beam evaporation at 300°C. After deposition, the films were annealed in nitrogen at temperatures between 500°C and 1050°C. The films were analyzed by X-ray reflectivity (XRR) and atomic force microscopy (AFM) in order to determine film thickness, surface roughness and density of the AlOx layer. No differences were found in the behavior of AlOx films upon annealing for the two different employed deposition techniques. Annealing results in film densification, which is most prominent above the crystallization temperature (800°C). In addition to the increasing density, a mass loss of ~5% was determined and attributed to the presence of aluminum oxyhydroxide in as deposited films. All changes in film properties after high temperature annealing appear to be independent of the deposition technique.
基金Wolfram Pernice acknowledges support from the DFG(Grants Nos.PE 1832/1-1&PE 1832/2-1)the Helmholtz Society(Grant No.HIRG-0005)+3 种基金We acknowledge support by Deutsche Forschungsgemeinschaft(DFG)and Open Access Publishing Fund of Karlsruhe Institute of TechnologyPatrik Rath acknowledges financial support by the Deutsche Telekom StiftungThe PhD education of Patrik Rath and Oliver Kahl is embedded in the Karlsruhe School of Optics&Photonics(KSOP)We also acknowledge support by the DFG and the State of Baden-Wu¨rttemberg through the DFG-Center for Functional Nanostructures(CFN)within subproject A6.4.
文摘Photonic quantum technologies hold promise to repeat the success of integrated nanophotonic circuits in non-classical applications.Using linear optical elements,quantum optical computations can be performed with integrated optical circuits and can therefore overcome the existing limitations in terms of scalability.In addition to passive optical devices for realizing photonic quantum gates,active elements,such as single-photon sources and single-photon detectors,are essential ingredients for future optical quantum circuits.Material systems that allow for the monolithic integration of all components are particularly attractive,including III-V semiconductors,silicon and diamond.Here,we demonstrate nanophotonic integrated circuits made from high-quality polycrystalline diamond thin films in combination with on-chip single-photon detectors.By using superconducting nanowires that are coupled evanescently to traveling waves,we achieve high detection efficiencies of up to 66%as well as low dark count rates and a timing resolution of 190 ps.Our devices are fully scalable and hold promise for functional diamond photonic quantum devices.