期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Partial Order in Potts Models on the Generalized Decorated Square Lattice
1
作者 QIN Ming-Pu CHEN Jing +5 位作者 CHEN Qiao-Ni XIE Zhi-Yuan KONG Xin ZHAO Hui-Hai Bruce Normand XIANG Tao 《Chinese Physics Letters》 SCIE CAS CSCD 2013年第7期152-156,共5页
We explore the Potts model on the generalized decorated square lattice,with both nearest(J1)and next-nearest(J2)neighbor interactions.Using the tensor renormalization-group method augmented by higher order singular va... We explore the Potts model on the generalized decorated square lattice,with both nearest(J1)and next-nearest(J2)neighbor interactions.Using the tensor renormalization-group method augmented by higher order singular value decompositions,we calculate the spontaneous magnetization of the Potts model with q=2,3,and 4.The results for q=2 allow us to benchmark our numerics using the exact solution.For q=3,we find a highly degenerate ground state with partial order on a single sublattice,but with vanishing entropy per site,and we obtain the phase diagram as a function of the ratio J2/J1.There is no finite-temperature transition for the q=4 case when J1=J2,whereas the magnetic susceptibility diverges as the temperature goes to zero,showing that the model is critical at T=0. 展开更多
关键词 solution. DEGENERATE MAGNETIZATION
原文传递
基于Hamilton函数方法的非线性微分代数系统反馈控制 被引量:2
2
作者 刘艳红 李春文 吴热冰 《中国科学(E辑)》 CSCD 北大核心 2006年第8期825-835,共11页
基于Hamilton函数方法研究了一类非线性微分代数系统的镇定和H_∞控制问题.首先结合非线性微分代数系统内在的广义能量平衡特性提出了一种新的耗散Hamilton实现结构.基于该结构,对不存在外部扰动的非线性微分代数系统设计了镇定控制器,... 基于Hamilton函数方法研究了一类非线性微分代数系统的镇定和H_∞控制问题.首先结合非线性微分代数系统内在的广义能量平衡特性提出了一种新的耗散Hamilton实现结构.基于该结构,对不存在外部扰动的非线性微分代数系统设计了镇定控制器,对存在外部扰动的非线性微分代数系统,证明了其L_2增益分析问题可以归结为广义Hamilton-Jacobi不等式的求解问题,并给出了H_∞控制器的构造方法.所提出的非线性微分代数系统的镇定和鲁棒控制器设计方法能充分利用非线性微分代数系统的结构特点,所设计的控制器形式简单,易于实现. 展开更多
关键词 非线性微分代数系统 Hamilton函数方法 耗散Hamilton实现 镇定 H∞控制
原文传递
Feedback control of nonlinear differential algebraic systems using Hamiltonian function method 被引量:10
3
作者 LIU Yanhong LI Chunwen WU Rebing 《Science in China(Series F)》 2006年第4期436-445,共10页
The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR... The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form. 展开更多
关键词 nonlinear differential algebraic systems Hamiltonian function method dissipative Hamilton realization STABILIZATION H∞ control.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部