Based on tropical cyclone (TC) data for the period 1949 to 2008 and following the Gumbe-Imethod, Pearson-Ⅲ method and determinacy method, this article estimates the possible minimum centralpressure of TCs affecting s...Based on tropical cyclone (TC) data for the period 1949 to 2008 and following the Gumbe-Imethod, Pearson-Ⅲ method and determinacy method, this article estimates the possible minimum centralpressure of TCs affecting southern Fujian where a nuclear power will be located. Results show that theobserved minimum central pressure of TCs agrees well with the results determined with the methods aboveand there is little difference between them (the minimum central pressure is 867.4 hPa and 868.1 hPa,respectively, in a 1,000-yr return period). Established with the theory of atmospheric dynamics, thedeterminacy method yields a result of 867.28 hPa/1000 years, only a little smaller than the result of theprobability method. Because of randomicity in parameter adjustment with the Pearson-Ⅲ method whereasthe determinacy method is theoretically solid and its estimates are the smallest of the three methods, it istherefore reasonable, for security and conservative concerns, to adopt the result determined with thedeterminacy method as the possible maximum intensity of TC (with the central pressure being 867.28 hPa ina 1,000-yr return period).展开更多
Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during t...Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during transitions from the summer monsoon to the winter monsoon in East Asian subtropics, and investigates the interannual variations of the thermal contrast and their relationships with circulation systems over the East Asian subtropics. The findings are as follows. 1) In autumn, the interannual variations of the temperature deviation in the middle and upper troposphere show significant east-west out-of-phase teleconnection over Asia and the central and eastern Pacific, i.e. the Asian-Pacific Oscillation, or APO. 2) While not as significant as in summer with regard to coverage and intensity, the APO shows interannual variations in autumn that well depicts the change in the intensity of the subtropical monsoon. In the high(low) APO year, the current subtropical summer monsoon is strong(weak) and the winter monsoon is weak(strong) in East Asia as derived from the general circulation and wind field of the East Asian-Pacific region.展开更多
基金Natural Science Foundation of Fujian Province(2007J0122)Natural Science Foundation of China(90915002)
文摘Based on tropical cyclone (TC) data for the period 1949 to 2008 and following the Gumbe-Imethod, Pearson-Ⅲ method and determinacy method, this article estimates the possible minimum centralpressure of TCs affecting southern Fujian where a nuclear power will be located. Results show that theobserved minimum central pressure of TCs agrees well with the results determined with the methods aboveand there is little difference between them (the minimum central pressure is 867.4 hPa and 868.1 hPa,respectively, in a 1,000-yr return period). Established with the theory of atmospheric dynamics, thedeterminacy method yields a result of 867.28 hPa/1000 years, only a little smaller than the result of theprobability method. Because of randomicity in parameter adjustment with the Pearson-Ⅲ method whereasthe determinacy method is theoretically solid and its estimates are the smallest of the three methods, it istherefore reasonable, for security and conservative concerns, to adopt the result determined with thedeterminacy method as the possible maximum intensity of TC (with the central pressure being 867.28 hPa ina 1,000-yr return period).
基金National Natural Science Foundation of China(91215302,51278308)Open Project for State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry,Institute of Atmospheric Physics(LAPC)Natural Science Foundation of Fujian Province(2014J01146)
文摘Based on the 1961-2010 NCEP/NCAR reanalysis, this work uses empirical orthogonal function(EOF) and composite analysis to study the distributions of zonal land-sea thermal contrast between Asia and the Pacific during transitions from the summer monsoon to the winter monsoon in East Asian subtropics, and investigates the interannual variations of the thermal contrast and their relationships with circulation systems over the East Asian subtropics. The findings are as follows. 1) In autumn, the interannual variations of the temperature deviation in the middle and upper troposphere show significant east-west out-of-phase teleconnection over Asia and the central and eastern Pacific, i.e. the Asian-Pacific Oscillation, or APO. 2) While not as significant as in summer with regard to coverage and intensity, the APO shows interannual variations in autumn that well depicts the change in the intensity of the subtropical monsoon. In the high(low) APO year, the current subtropical summer monsoon is strong(weak) and the winter monsoon is weak(strong) in East Asia as derived from the general circulation and wind field of the East Asian-Pacific region.