期刊文献+
共找到116篇文章
< 1 2 6 >
每页显示 20 50 100
A Proposed Feature Selection Particle Swarm Optimization Adaptation for Intelligent Logistics--A Supply Chain Backlog Elimination Framework
1
作者 Yasser Hachaichi Ayman E.Khedr Amira M.Idrees 《Computers, Materials & Continua》 SCIE EI 2024年第6期4081-4105,共25页
The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,a... The diversity of data sources resulted in seeking effective manipulation and dissemination.The challenge that arises from the increasing dimensionality has a negative effect on the computation performance,efficiency,and stability of computing.One of the most successful optimization algorithms is Particle Swarm Optimization(PSO)which has proved its effectiveness in exploring the highest influencing features in the search space based on its fast convergence and the ability to utilize a small set of parameters in the search task.This research proposes an effective enhancement of PSO that tackles the challenge of randomness search which directly enhances PSO performance.On the other hand,this research proposes a generic intelligent framework for early prediction of orders delay and eliminate orders backlogs which could be considered as an efficient potential solution for raising the supply chain performance.The proposed adapted algorithm has been applied to a supply chain dataset which minimized the features set from twenty-one features to ten significant features.To confirm the proposed algorithm results,the updated data has been examined by eight of the well-known classification algorithms which reached a minimum accuracy percentage equal to 94.3%for random forest and a maximum of 99.0 for Naïve Bayes.Moreover,the proposed algorithm adaptation has been compared with other proposed adaptations of PSO from the literature over different datasets.The proposed PSO adaptation reached a higher accuracy compared with the literature ranging from 97.8 to 99.36 which also proved the advancement of the current research. 展开更多
关键词 Optimization particle swarm optimization algorithm feature selection LOGISTICS supply chain management backlogs
下载PDF
A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting
2
作者 Farhan Ullah Xuexia Zhang +2 位作者 Mansoor Khan Muhammad Abid Abdullah Mohamed 《Computers, Materials & Continua》 SCIE EI 2024年第5期3373-3395,共23页
Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article... Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows.Traditional approaches frequently struggle with complex data and non-linear connections. This article presentsa novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts.The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-EraRetrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms usingin-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model,while a temporal convolutional network handles time-series complexities and data gaps. The ensemble-temporalneural network is enhanced by providing different input parameters including training layers, hidden and dropoutlayers along with activation and loss functions. The proposed framework is further analyzed by comparing stateof-the-art forecasting models in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE),respectively. The energy efficiency performance indicators showed that the proposed model demonstrates errorreduction percentages of approximately 16.67%, 28.57%, and 81.92% for MAE, and 38.46%, 17.65%, and 90.78%for RMSE for MERRAWind farms 1, 2, and 3, respectively, compared to other existingmethods. These quantitativeresults show the effectiveness of our proposed model with MAE values ranging from 0.0010 to 0.0156 and RMSEvalues ranging from 0.0014 to 0.0174. This work highlights the effectiveness of requirements engineering in windpower forecasting, leading to enhanced forecast accuracy and grid stability, ultimately paving the way for moresustainable energy solutions. 展开更多
关键词 Ensemble learning machine learning real-time data analysis stakeholder analysis temporal convolutional network wind power forecasting
下载PDF
Natural Convection and Irreversibility of Nanofluid Due to Inclined Magnetohydrodynamics(MHD)Filled in a Cavity with Y-Shape Heated Fin:FEM Computational
3
作者 Afraz Hussain Majeed Rashid Mahmood +3 位作者 Sayed M.Eldin Imran Saddique S.Saleem Muhammad Jawad 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1505-1519,共15页
This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while th... This study explains the entropy process of natural convective heating in the nanofluid-saturated cavity in a heated fin andmagnetic field.The temperature is constant on the Y-shaped fin,insulating the topwall while the remaining walls remain cold.All walls are subject to impermeability and non-slip conditions.The mathematical modeling of the problem is demonstrated by the continuity,momentum,and energy equations incorporating the inclined magnetic field.For elucidating the flow characteristics Finite ElementMethod(FEM)is implemented using stable FE pair.A hybrid fine mesh is used for discretizing the domain.Velocity and thermal plots concerning parameters are drawn.In addition,a detailed discussion regarding generation energy by monitoring changes in magnetic,viscous,total,and thermal irreversibility is provided.In addition,line graphs are created for the u and v components of the velocity profile to predict the flow behavior.Current simulations assume the dimensionless representative of magnetic field Hartmann number Ha between 0 and 100 and a magnetic field inclination between 0 and 90 degrees.A constant 4% volume proportion of nanoparticles is employed throughout all scenarios. 展开更多
关键词 Finite element method nanomaterials entropy MHD square cavity Y-fin
下载PDF
Fireworks Optimization with Deep Learning-Based Arabic Handwritten Characters Recognition Model
4
作者 Abdelwahed Motwakel Badriyya B.Al-onazi +5 位作者 Jaber S.Alzahrani Ayman Yafoz Mahmoud Othman Abu Sarwar Zamani Ishfaq Yaseen Amgad Atta Abdelmageed 《Computer Systems Science & Engineering》 2024年第5期1387-1403,共17页
Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases wa... Handwritten character recognition becomes one of the challenging research matters.More studies were presented for recognizing letters of various languages.The availability of Arabic handwritten characters databases was confined.Almost a quarter of a billion people worldwide write and speak Arabic.More historical books and files indicate a vital data set for many Arab nationswritten in Arabic.Recently,Arabic handwritten character recognition(AHCR)has grabbed the attention and has become a difficult topic for pattern recognition and computer vision(CV).Therefore,this study develops fireworks optimizationwith the deep learning-based AHCR(FWODL-AHCR)technique.Themajor intention of the FWODL-AHCR technique is to recognize the distinct handwritten characters in the Arabic language.It initially pre-processes the handwritten images to improve their quality of them.Then,the RetinaNet-based deep convolutional neural network is applied as a feature extractor to produce feature vectors.Next,the deep echo state network(DESN)model is utilized to classify handwritten characters.Finally,the FWO algorithm is exploited as a hyperparameter tuning strategy to boost recognition performance.Various simulations in series were performed to exhibit the enhanced performance of the FWODL-AHCR technique.The comparison study portrayed the supremacy of the FWODL-AHCR technique over other approaches,with 99.91%and 98.94%on Hijja and AHCD datasets,respectively. 展开更多
关键词 Arabic language handwritten character recognition deep learning CLASSIFICATION parameter tuning
下载PDF
Chaotic Elephant Herd Optimization with Machine Learning for Arabic Hate Speech Detection
5
作者 Badriyya B.Al-onazi Jaber S.Alzahrani +5 位作者 Najm Alotaibi Hussain Alshahrani Mohamed Ahmed Elfaki Radwa Marzouk Heba Mohsen Abdelwahed Motwakel 《Intelligent Automation & Soft Computing》 2024年第3期567-583,共17页
In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that op... In recent years,the usage of social networking sites has considerably increased in the Arab world.It has empowered individuals to express their opinions,especially in politics.Furthermore,various organizations that operate in the Arab countries have embraced social media in their day-to-day business activities at different scales.This is attributed to business owners’understanding of social media’s importance for business development.However,the Arabic morphology is too complicated to understand due to the availability of nearly 10,000 roots and more than 900 patterns that act as the basis for verbs and nouns.Hate speech over online social networking sites turns out to be a worldwide issue that reduces the cohesion of civil societies.In this background,the current study develops a Chaotic Elephant Herd Optimization with Machine Learning for Hate Speech Detection(CEHOML-HSD)model in the context of the Arabic language.The presented CEHOML-HSD model majorly concentrates on identifying and categorising the Arabic text into hate speech and normal.To attain this,the CEHOML-HSD model follows different sub-processes as discussed herewith.At the initial stage,the CEHOML-HSD model undergoes data pre-processing with the help of the TF-IDF vectorizer.Secondly,the Support Vector Machine(SVM)model is utilized to detect and classify the hate speech texts made in the Arabic language.Lastly,the CEHO approach is employed for fine-tuning the parameters involved in SVM.This CEHO approach is developed by combining the chaotic functions with the classical EHO algorithm.The design of the CEHO algorithm for parameter tuning shows the novelty of the work.A widespread experimental analysis was executed to validate the enhanced performance of the proposed CEHOML-HSD approach.The comparative study outcomes established the supremacy of the proposed CEHOML-HSD model over other approaches. 展开更多
关键词 Arabic language machine learning elephant herd optimization TF-IDF vectorizer hate speech detection
下载PDF
Extended Deep Learning Algorithm for Improved Brain Tumor Diagnosis System
6
作者 M.Adimoolam K.Maithili +7 位作者 N.M.Balamurugan R.Rajkumar S.Leelavathy Raju Kannadasan Mohd Anul Haq Ilyas Khan ElSayed M.Tag El Din Arfat Ahmad Khan 《Intelligent Automation & Soft Computing》 2024年第1期33-55,共23页
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st... At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated. 展开更多
关键词 Brain tumor extended deep learning algorithm convolution neural network tumor detection deep learning
下载PDF
Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus 被引量:2
7
作者 Hala J.Alshahrani Abdulkhaleq Q.A.Hassan +5 位作者 Khaled Tarmissi Amal S.Mehanna Abdelwahed Motwakel Ishfaq Yaseen Amgad Atta Abdelmageed Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第5期4255-4272,共18页
Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking an... Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively. 展开更多
关键词 Arabic corpus fake news detection deep learning hunter prey optimizer classification model
下载PDF
Automated Video-Based Face Detection Using Harris Hawks Optimization with Deep Learning 被引量:1
8
作者 Latifah Almuqren Manar Ahmed Hamza +1 位作者 Abdullah Mohamed Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第6期4917-4933,共17页
Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments... Face recognition technology automatically identifies an individual from image or video sources.The detection process can be done by attaining facial characteristics from the image of a subject face.Recent developments in deep learning(DL)and computer vision(CV)techniques enable the design of automated face recognition and tracking methods.This study presents a novel Harris Hawks Optimization with deep learning-empowered automated face detection and tracking(HHODL-AFDT)method.The proposed HHODL-AFDT model involves a Faster region based convolution neural network(RCNN)-based face detection model and HHO-based hyperparameter opti-mization process.The presented optimal Faster RCNN model precisely rec-ognizes the face and is passed into the face-tracking model using a regression network(REGN).The face tracking using the REGN model uses the fea-tures from neighboring frames and foresees the location of the target face in succeeding frames.The application of the HHO algorithm for optimal hyperparameter selection shows the novelty of the work.The experimental validation of the presented HHODL-AFDT algorithm is conducted using two datasets and the experiment outcomes highlighted the superior performance of the HHODL-AFDT model over current methodologies with maximum accuracy of 90.60%and 88.08%under PICS and VTB datasets,respectively. 展开更多
关键词 Face detection face tracking deep learning computer vision video surveillance parameter tuning
下载PDF
Sine Cosine Optimization with Deep Learning-Based Applied Linguistics for Sentiment Analysis on COVID-19 Tweets 被引量:1
9
作者 Abdelwahed Motwakel Hala J.Alshahrani +5 位作者 Abdulkhaleq Q.A.Hassan Khaled Tarmissi Amal S.Mehanna Ishfaq Yaseen Amgad Atta Abdelmageed Mohammad Mahzari 《Computers, Materials & Continua》 SCIE EI 2023年第6期4767-4783,共17页
Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19)... Applied linguistics is an interdisciplinary domain which identifies,investigates,and offers solutions to language-related real-life problems.The new coronavirus disease,otherwise known as Coronavirus disease(COVID-19),has severely affected the everyday life of people all over the world.Specifically,since there is insufficient access to vaccines and no straight or reliable treatment for coronavirus infection,the country has initiated the appropriate preventive measures(like lockdown,physical separation,and masking)for combating this extremely transmittable disease.So,individuals spent more time on online social media platforms(i.e.,Twitter,Facebook,Instagram,LinkedIn,and Reddit)and expressed their thoughts and feelings about coronavirus infection.Twitter has become one of the popular social media platforms and allows anyone to post tweets.This study proposes a sine cosine optimization with bidirectional gated recurrent unit-based senti-ment analysis(SCOBGRU-SA)on COVID-19 tweets.The SCOBGRU-SA technique aimed to detect and classify the various sentiments in Twitter data during the COVID-19 pandemic.The SCOBGRU-SA technique follows data pre-processing and the Fast-Text word embedding process to accomplish this.Moreover,the BGRU model is utilized to recognise and classify sen-timents present in the tweets.Furthermore,the SCO algorithm is exploited for tuning the BGRU method’s hyperparameter,which helps attain improved classification performance.The experimental validation of the SCOBGRU-SA technique takes place using a benchmark dataset,and the results signify its promising performance compared to other DL models. 展开更多
关键词 Applied linguistics deep learning sentiment analysis COVID-19 pandemic sine cosine optimization TWITTER
下载PDF
Automated Machine Learning Enabled Cybersecurity Threat Detection in Internet of Things Environment 被引量:1
10
作者 Fadwa Alrowais Sami Althahabi +3 位作者 Saud S.Alotaibi Abdullah Mohamed Manar Ahmed Hamza Radwa Marzouk 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期687-700,共14页
Recently,Internet of Things(IoT)devices produces massive quantity of data from distinct sources that get transmitted over public networks.Cybersecurity becomes a challenging issue in the IoT environment where the exis... Recently,Internet of Things(IoT)devices produces massive quantity of data from distinct sources that get transmitted over public networks.Cybersecurity becomes a challenging issue in the IoT environment where the existence of cyber threats needs to be resolved.The development of automated tools for cyber threat detection and classification using machine learning(ML)and artificial intelligence(AI)tools become essential to accomplish security in the IoT environment.It is needed to minimize security issues related to IoT gadgets effectively.Therefore,this article introduces a new Mayfly optimization(MFO)with regularized extreme learning machine(RELM)model,named MFO-RELM for Cybersecurity Threat Detection and classification in IoT environment.The presented MFORELM technique accomplishes the effectual identification of cybersecurity threats that exist in the IoT environment.For accomplishing this,the MFO-RELM model pre-processes the actual IoT data into a meaningful format.In addition,the RELM model receives the pre-processed data and carries out the classification process.In order to boost the performance of the RELM model,the MFO algorithm has been employed to it.The performance validation of the MFO-RELM model is tested using standard datasets and the results highlighted the better outcomes of the MFO-RELM model under distinct aspects. 展开更多
关键词 Cybersecurity threats classification internet of things machine learning parameter optimization
下载PDF
Deep Transfer Learning-Enabled Activity Identification and Fall Detection for Disabled People 被引量:1
11
作者 Majdy M.Eltahir Adil Yousif +6 位作者 Fadwa Alrowais Mohamed K.Nour Radwa Marzouk Hatim Dafaalla Asma Abbas Hassan Elnour Amira Sayed A.Aziz Manar Ahmed Hamza 《Computers, Materials & Continua》 SCIE EI 2023年第5期3239-3255,共17页
The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection.This is especially applicable in the case of elderly or disabled people who live sel... The human motion data collected using wearables like smartwatches can be used for activity recognition and emergency event detection.This is especially applicable in the case of elderly or disabled people who live self-reliantly in their homes.These sensors produce a huge volume of physical activity data that necessitates real-time recognition,especially during emergencies.Falling is one of the most important problems confronted by older people and people with movement disabilities.Numerous previous techniques were introduced and a few used webcam to monitor the activity of elderly or disabled people.But,the costs incurred upon installation and operation are high,whereas the technology is relevant only for indoor environments.Currently,commercial wearables use a wireless emergency transmitter that produces a number of false alarms and restricts a user’s movements.Against this background,the current study develops an Improved WhaleOptimizationwithDeep Learning-Enabled Fall Detection for Disabled People(IWODL-FDDP)model.The presented IWODL-FDDP model aims to identify the fall events to assist disabled people.The presented IWODLFDDP model applies an image filtering approach to pre-process the image.Besides,the EfficientNet-B0 model is utilized to generate valuable feature vector sets.Next,the Bidirectional Long Short Term Memory(BiLSTM)model is used for the recognition and classification of fall events.Finally,the IWO method is leveraged to fine-tune the hyperparameters related to the BiLSTM method,which shows the novelty of the work.The experimental analysis outcomes established the superior performance of the proposed IWODL-FDDP method with a maximum accuracy of 97.02%. 展开更多
关键词 Fall detection disabled people deep learning improved whale optimization assisted living
下载PDF
Coati Optimization-Based Energy Efficient Routing Protocol for Unmanned Aerial Vehicle Communication 被引量:1
12
作者 Hanan Abdullah Mengash Hamed Alqahtani +5 位作者 Mohammed Maray Mohamed K.Nour Radwa Marzouk Mohammed Abdullah Al-Hagery Heba Mohsen Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第6期4805-4820,共16页
With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous conn... With the flexible deployment and high mobility of Unmanned Aerial Vehicles(UAVs)in an open environment,they have generated con-siderable attention in military and civil applications intending to enable ubiquitous connectivity and foster agile communications.The difficulty stems from features other than mobile ad-hoc network(MANET),namely aerial mobility in three-dimensional space and often changing topology.In the UAV network,a single node serves as a forwarding,transmitting,and receiving node at the same time.Typically,the communication path is multi-hop,and routing significantly affects the network’s performance.A lot of effort should be invested in performance analysis for selecting the optimum routing system.With this motivation,this study modelled a new Coati Optimization Algorithm-based Energy-Efficient Routing Process for Unmanned Aerial Vehicle Communication(COAER-UAVC)technique.The presented COAER-UAVC technique establishes effective routes for communication between the UAVs.It is primarily based on the coati characteristics in nature:if attacking and hunting iguanas and escaping from predators.Besides,the presented COAER-UAVC technique concentrates on the design of fitness functions to minimize energy utilization and communication delay.A varied group of simulations was performed to depict the optimum performance of the COAER-UAVC system.The experimental results verified that the COAER-UAVC technique had assured improved performance over other approaches. 展开更多
关键词 Artificial intelligence unmanned aerial vehicle data communication routing protocol energy efficiency
下载PDF
Enhanced Crow Search with Deep Learning-Based Cyberattack Detection in SDN-IoT Environment 被引量:1
13
作者 Abdelwahed Motwakel Fadwa Alrowais +5 位作者 Khaled Tarmissi Radwa Marzouk Abdullah Mohamed Abu Sarwar Zamani Ishfaq Yaseen Mohamed I.Eldesouki 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3157-3173,共17页
The paradigm shift towards the Internet of Things(IoT)phe-nomenon and the rise of edge-computing models provide massive poten-tial for several upcoming IoT applications like smart grid,smart energy,smart home,smart he... The paradigm shift towards the Internet of Things(IoT)phe-nomenon and the rise of edge-computing models provide massive poten-tial for several upcoming IoT applications like smart grid,smart energy,smart home,smart health and smart transportation services.However,it also provides a sequence of novel cyber-security issues.Although IoT networks provide several advantages,the heterogeneous nature of the network and the wide connectivity of the devices make the network easy for cyber-attackers.Cyberattacks result in financial loss and data breaches for organizations and individuals.So,it becomes crucial to secure the IoT environment from such cyberattacks.With this motivation,the current study introduces an effectual Enhanced Crow Search Algorithm with Deep Learning-Driven Cyberattack Detection(ECSADL-CAD)model for the Software-Defined Networking(SDN)-enabled IoT environment.The presented ECSADL-CAD approach aims to identify and classify the cyberattacks in the SDN-enabled IoT envi-ronment.To attain this,the ECSADL-CAD model initially pre-processes the data.In the presented ECSADL-CAD model,the Reinforced Deep Belief Network(RDBN)model is employed for attack detection.At last,the ECSA-based hyperparameter tuning process gets executed to boost the overall classification outcomes.A series of simulations were conducted to validate the improved outcomes of the proposed ECSADL-CAD model.The experimental outcomes confirmed the superiority of the proposed ECSADL-CAD model over other existing methodologies. 展开更多
关键词 Software defined networks artificial intelligence CYBERSECURITY deep learning internet of things
下载PDF
Blockchain and IIoT Enabled Solution for Social Distancing and Isolation Management to Prevent Pandemics
14
作者 Muhammad Saad Maaz Bin Ahmad +4 位作者 Muhammad Asif Muhammad Khalid Khan Toqeer Mahmood Elsayed Tag Eldin Hala Abdel Hameed 《Computers, Materials & Continua》 SCIE EI 2023年第7期687-709,共23页
Pandemics have always been a nightmare for humanity,especially in developing countries.Forced lockdowns are considered one of the effective ways to deal with spreading such pandemics.Still,developing countries cannot ... Pandemics have always been a nightmare for humanity,especially in developing countries.Forced lockdowns are considered one of the effective ways to deal with spreading such pandemics.Still,developing countries cannot afford such solutions because these may severely damage the country’s econ-omy.Therefore,this study presents the proactive technological mechanisms for business organizations to run their standard business processes during pandemic-like situations smoothly.The novelty of this study is to provide a state-of-the-art solution to prevent pandemics using industrial internet of things(IIoT)and blockchain-enabled technologies.Compared to existing studies,the immutable and tamper-proof contact tracing and quarantine management solution is proposed.The use of advanced technologies and information security is a critical area for practitioners in the internet of things(IoT)and corresponding solutions.Therefore,this study also emphasizes information security,end-to-end solution,and experimental results.Firstly,a wearable wristband is proposed,incorporating 4G-enabled ultra-wideband(UWB)technology for smart contact tracing mechanisms in industries to comply with standard operating procedures outlined by the world health organization(WHO).Secondly,distributed ledger technology(DLT)omits the centralized dependency for transmitting contact tracing data.Thirdly,a privacy-preserving tracing mechanism is discussed using a public/private key cryptography-based authentication mechanism.Lastly,based on geofencing techniques,blockchain-enabled machine-to-machine(M2M)technology is proposed for quarantine management.The step-by-step methodology and test results are proposed to ensure contact tracing and quarantine management.Unlike existing research studies,the security aspect is also considered in the realm of blockchain.The practical implementation of the proposed solution also obtains the results.The results indicate the successful implementation of blockchain-enabled contact tracing and isolation management using IoT and geo-fencing techniques,which could help battle pandemic situations.Researchers can also consider the 5G-enabled narrowband internet of things(NB-IoT)technologies to implement contact tracing solutions. 展开更多
关键词 Blockchain contact tracing distributed ledger technology geo-fencing internet of things industrial internet of things isolation management social distancing ULTRA-WIDEBAND
下载PDF
Load Balancing Based on Multi-Agent Framework to Enhance Cloud Environment
15
作者 Shrouk H.Hessen Hatem M.Abdul-kader +1 位作者 Ayman E.Khedr Rashed K.Salem 《Computers, Materials & Continua》 SCIE EI 2023年第2期3015-3028,共14页
According to the advances in users’service requirements,physical hardware accessibility,and speed of resource delivery,Cloud Computing(CC)is an essential technology to be used in many fields.Moreover,the Internet of ... According to the advances in users’service requirements,physical hardware accessibility,and speed of resource delivery,Cloud Computing(CC)is an essential technology to be used in many fields.Moreover,the Internet of Things(IoT)is employed for more communication flexibility and richness that are required to obtain fruitful services.A multi-agent system might be a proper solution to control the load balancing of interaction and communication among agents.This paper proposes a multi-agent load balancing framework that consists of two phases to optimize the workload among different servers with large-scale CC power with various utilities and a significant number of IoT devices with low resources.Different agents are integrated based on relevant features of behavioral interaction using classification techniques to balance the workload.Aload balancing algorithm is developed to serve users’requests to improve the solution of workload problems with an efficient distribution.The activity task from IoT devices has been classified by feature selection methods in the preparatory phase to optimize the scalability ofCC.Then,the server’s availability is checked and the classified task is assigned to its suitable server in the main phase to enhance the cloud environment performance.Multi-agent load balancing framework is succeeded to cope with the importance of using large-scale requirements of CC and(low resources and large number)of IoT. 展开更多
关键词 Cloud computing IoT multi-agent system load balancing algorithm server utilities
下载PDF
The Influence of Saturated and Bilinear Incidence Functions on the Dynamical Behavior of HIV Model Using Galerkin Scheme Having a Polynomial of Order Two
16
作者 Attaullah Kamil Zeb Abdullah Mohamed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1661-1685,共25页
Mathematical modelling has been extensively used to measure intervention strategies for the control of contagious conditions.Alignment between different models is pivotal for furnishing strong substantiation for polic... Mathematical modelling has been extensively used to measure intervention strategies for the control of contagious conditions.Alignment between different models is pivotal for furnishing strong substantiation for policymakers because the differences in model features can impact their prognostications.Mathematical modelling has been widely used in order to better understand the transmission,treatment,and prevention of infectious diseases.Herein,we study the dynamics of a human immunodeficiency virus(HIV)infection model with four variables:S(t),I(t),C(t),and A(t)the susceptible individuals;HIV infected individuals(with no clinical symptoms of AIDS);HIV infected individuals(under ART with a viral load remaining low),and HIV infected individuals with two different incidence functions(bilinear and saturated incidence functions).A novel numerical scheme called the continuous Galerkin-Petrov method is implemented for the solution of themodel.The influence of different clinical parameters on the dynamical behavior of S(t),I(t),C(t)and A(t)is described and analyzed.All the results are depicted graphically.On the other hand,we explore the time-dependent movement of nanofluid in porous media on an extending sheet under the influence of thermal radiation,heat flux,hall impact,variable heat source,and nanomaterial.The flow is considered to be 2D,boundary layer,viscous,incompressible,laminar,and unsteady.Sufficient transformations turn governing connected PDEs intoODEs,which are solved using the proposed scheme.To justify the envisaged problem,a comparison of the current work with previous literature is presented. 展开更多
关键词 HIV/AIDS Galerkin technique bilinear and saturated incidence functions
下载PDF
Pythagorean Fuzzy Einstein Aggregation Operators with Z-Numbers:Application in Complex Decision Aid Systems
17
作者 Shahzad Noor Abbasi Shahzaib Ashraf +1 位作者 M.Shazib Hameed Sayed M.Eldin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2795-2844,共50页
The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability ... The primary goal of this research is to determine the optimal agricultural field selection that would most effectively support manufacturing producers in manufacturing production while accounting for unpredictability and reliability in their decision-making.The PFS is known to address the levels of participation and non-participation.To begin,we introduce the novel concept of a PFZN,which is a hybrid structure of Pythagorean fuzzy sets and the ZN.The PFZN is graded in terms of membership and non-membership,as well as reliability,which provides a strong advice in real-world decision support concerns.The PFZN is a useful tool for dealing with uncertainty in decision-aid problems.The PFZN is a practical way for dealing with such uncertainties in decision-aid problems.The list of aggregation operators:PFZN Einstein weighted averaging and PFZN Einstein weighted geometric,is established under the novel Pythagorean fuzzy ZNs.It is a more precise mathematical instrument for dealing with precision and uncertainty.The core of this research is to develop a numerical algorithmto tackle the uncertainty in real-life problems using PFZNs.To show the applicability and effectiveness of the proposed algorithm,we illustrate the numerical case study related to determining the optimal agricultural field.The main purpose of this work is to describe the extended EDAS approach,then compare the proposed methodology with many other methodologies now in use,and then demonstrate how the suggested methodology may be applied to real-world problems.In addition,the final ranking results that were obtained by the devised techniques weremore efficient and dependable in comparison to the results provided by other methods presented in the literature. 展开更多
关键词 Pythagorean fuzzy Z-number Einstein weighted averaging Pythagorean fuzzy Z-number Einstein weighted geometric decision making
下载PDF
Modeling of Combined Economic and Emission Dispatch Using Improved Sand Cat Optimization Algorithm
18
作者 Fadwa Alrowais Jaber S.Alzahrani +2 位作者 Radwa Marzouk Abdullah Mohamed Gouse Pasha Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第6期6145-6160,共16页
Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid... Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid falling in local optimal,particularly when handling nonlinear and complex systems.Metaheuristics have recently received considerable attention due to their enhanced capacity to prevent local optimal solutions in addressing all the optimization problems as a black box.Therefore,this paper focuses on the design of an improved sand cat optimization algorithm based CEED(ISCOA-CEED)technique.The ISCOA-CEED technique majorly concen-trates on reducing fuel costs and the emission of generation units.Moreover,the presented ISCOA-CEED technique transforms the equality constraints of the CEED issue into inequality constraints.Besides,the improved sand cat optimization algorithm(ISCOA)is derived from the integration of tra-ditional SCOA with the Levy Flight(LF)concept.At last,the ISCOA-CEED technique is applied to solve a series of 6 and 11 generators in the CEED issue.The experimental validation of the ISCOA-CEED technique ensured the enhanced performance of the presented ISCOA-CEED technique over other recent approaches. 展开更多
关键词 Economic and emission dispatch multi-objective optimization metaheuristics fuel cost minimization sand cat optimization
下载PDF
Multi-Objective Optimization of External Louvers in Buildings
19
作者 Tzu-Chia Chen Ngakan Ketut Acwin Dwijendra +2 位作者 I.Wayan Parwata Agata Iwan Candra Elsayed M.Tag El Din 《Computers, Materials & Continua》 SCIE EI 2023年第4期1305-1316,共12页
Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortabl... Because solar energy is among the renewable energies,it has traditionally been used to provide lighting in buildings.When solar energy is effectively utilized during the day,the environment is not only more comfortable for users,but it also utilizes energy more efficiently for both heating and cooling purposes.Because of this,increasing the building’s energy efficiency requires first controlling the amount of light that enters the space.Considering that the only parts of the building that come into direct contact with the sun are the windows,it is essential to make use of louvers in order to regulate the amount of sunlight that enters the building.Through the use of Ant Colony Optimization(ACO),the purpose of this study is to estimate the proportions and technical specifications of external louvers,as well as to propose a model for designing the southern openings of educational space in order to maximize energy efficiency and intelligent consumption,as well as to ensure that the appropriate amount of light is provided.According to the findings of this research,the design of external louvers is heavily influenced by a total of five distinct aspects:the number of louvers,the depth of the louvers,the angle of rotation of the louvers,the distance between the louvers and the window,and the reflection coefficient of the louvers.The results of the 2067 simulated case study show that the best reflection rates of the louvers are between 0 and 15 percent,and the most optimal distance between the louvers and the window is in the range of 0 to 18 centimeters.Additionally,the results show that the best distance between the louvers and the window is in the range of 0 to 18 centimeters. 展开更多
关键词 Ant colony optimization energy consumption multi-objective optimization louvre
下载PDF
Leveraging Gradient-Based Optimizer and Deep Learning for Automated Soil Classification Model
20
作者 Hadeel Alsolai Mohammed Rizwanullah +3 位作者 Mashael Maashi Mahmoud Othman Amani A.Alneil Amgad Atta Abdelmageed 《Computers, Materials & Continua》 SCIE EI 2023年第7期975-992,共18页
Soil classification is one of the emanating topics and major concerns in many countries.As the population has been increasing at a rapid pace,the demand for food also increases dynamically.Common approaches used by ag... Soil classification is one of the emanating topics and major concerns in many countries.As the population has been increasing at a rapid pace,the demand for food also increases dynamically.Common approaches used by agriculturalists are inadequate to satisfy the rising demand,and thus they have hindered soil cultivation.There comes a demand for computer-related soil classification methods to support agriculturalists.This study introduces a Gradient-Based Optimizer and Deep Learning(DL)for Automated Soil Clas-sification(GBODL-ASC)technique.The presented GBODL-ASC technique identifies various kinds of soil using DL and computer vision approaches.In the presented GBODL-ASC technique,three major processes are involved.At the initial stage,the presented GBODL-ASC technique applies the GBO algorithm with the EfficientNet prototype to generate feature vectors.For soil categorization,the GBODL-ASC procedure uses an arithmetic optimization algorithm(AOA)with a Back Propagation Neural Network(BPNN)model.The design of GBO and AOA algorithms assist in the proper selection of parameter values for the EfficientNet and BPNN models,respectively.To demonstrate the significant soil classification outcomes of the GBODL-ASC methodology,a wide-ranging simulation analysis is performed on a soil dataset comprising 156 images and five classes.The simulation values show the betterment of the GBODL-ASC model through other models with maximum precision of 95.64%. 展开更多
关键词 Soil classification earth sciences machine learning parameter optimization metaheuristics
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部