期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
背景场误差样本模拟对同化及数值预报效果的影响 被引量:5
1
作者 陈耀登 陈晓梦 +2 位作者 曾腊梅 WANG Hongli 王元兵 《高原气象》 CSCD 北大核心 2016年第3期767-776,共10页
合理估计背景场误差协方差矩阵(B)是做好变分同化的关键环节。利用控制变量随机扰动法(RandomCV)、增长模繁殖法(BGM)及NMC法等3种背景场样本模拟方法,基于WRFDA系统计算B矩阵,对B矩阵的特征及其对同化预报效果的影响进行了研究。B矩阵... 合理估计背景场误差协方差矩阵(B)是做好变分同化的关键环节。利用控制变量随机扰动法(RandomCV)、增长模繁殖法(BGM)及NMC法等3种背景场样本模拟方法,基于WRFDA系统计算B矩阵,对B矩阵的特征及其对同化预报效果的影响进行了研究。B矩阵的特征分析和单点观测试验表明,NMC法与RandomCV法得到的B矩阵误差方差较大,在同化中观测的权重更大;RandomCV法得到的B矩阵,背景场误差中变量的长度尺度更大,说明同化中观测的水平影响范围更大。连续循环同化和预报试验表明:应用RandomCV法计算得到的B矩阵分析与预报的效果明显优于系统自带的以及BGM法得到的B矩阵,且效果与NMC法相当与NMC方法相比,采用RandomCV方法产生背景场样本具有时间和人力成本相对低的优点。 展开更多
关键词 数值天气预报 资料同化 背景场误差协方差
下载PDF
ETKF协方差膨胀方案对WRFDA混合同化及预报的影响 被引量:2
2
作者 王元兵 陈耀登 +5 位作者 闵锦忠 高玉芳 Huang Xiangyu Wang Hongli 许冬梅 刘建宇 《高原气象》 CSCD 北大核心 2016年第2期397-405,共9页
为讨论集合变换卡尔曼滤波不同协方差膨胀方案对集合-变分混合同化及预报的影响,开展了中国中东部区域一次连续大范围降水过程的连续10天的循环同化和预报试验。结果表明:4种不同的协方差膨胀方案相对于无协方差膨胀的方案,均有效地提... 为讨论集合变换卡尔曼滤波不同协方差膨胀方案对集合-变分混合同化及预报的影响,开展了中国中东部区域一次连续大范围降水过程的连续10天的循环同化和预报试验。结果表明:4种不同的协方差膨胀方案相对于无协方差膨胀的方案,均有效地提高了混合同化和预报的效果。将同化时次之前所有膨胀系数平均值作为新膨胀系数的方案,同化和预报的效果均是最差的;其他3种协方差膨胀方案效果较为接近略有区别:对于风场,将预报误差协方差投影到集合子空间的方案和采用平均新息协方差信息的方案表现较好;对于温度场、湿度场和降水预报,采用平均新息协方差信息的方案和采用了同化时次前两次集合预报比率的方案较好。 展开更多
关键词 数值天气预报 资料同化 混合同化 协方差膨胀
下载PDF
各向异性背景场误差协方差构建及在“凡亚比”台风的应用 被引量:1
3
作者 陈耀登 陈晓梦 +2 位作者 闵锦忠 邢建勇 Wang Hongli 《海洋学报》 CAS CSCD 北大核心 2016年第9期32-45,共14页
利用相临过去时段预报结果中同一时刻不同时效的模式预报场差异,计算预报误差协方差,并基于集合-变分混合同化系统将其与静态背景场误差协方差结合,从而在同化系统中构建了具有各向异性和一定流依赖特征的背景场误差协方差。单点观测理... 利用相临过去时段预报结果中同一时刻不同时效的模式预报场差异,计算预报误差协方差,并基于集合-变分混合同化系统将其与静态背景场误差协方差结合,从而在同化系统中构建了具有各向异性和一定流依赖特征的背景场误差协方差。单点观测理想试验显示本方案改善了静态模型化背景场误差协方差的各向同性和流依赖性问题。"凡亚比"台风的一系列同化及模拟试验表明,从台风路径、强度等方面本文方案的效果都要优于三维变分法。本文方案在不需要集合预报,计算量与三维变分法相当的情况下,给同化系统引入了各向异性、一定流依赖特征的背景误差协方差,因此本方案适于在计算资源较为紧缺情况下,对时效要求较高的预报业务中应用。 展开更多
关键词 资料同化 混合同化 背景场误差协方差 各向异性 台风
下载PDF
Ensemble Transform Sensitivity Method for Adaptive Observations 被引量:3
4
作者 Yu ZHANG Yuanfu XIE +2 位作者 Hongli WANG Dehui CHEN Zoltan TOTH 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第1期10-20,共11页
The Ensemble Transform(ET) method has been shown to be useful in providing guidance for adaptive observation deployment.It predicts forecast error variance reduction for each possible deployment using its correspond... The Ensemble Transform(ET) method has been shown to be useful in providing guidance for adaptive observation deployment.It predicts forecast error variance reduction for each possible deployment using its corresponding transformation matrix in an ensemble subspace.In this paper,a new ET-based sensitivity(ETS) method,which calculates the gradient of forecast error variance reduction in terms of analysis error variance reduction,is proposed to specify regions for possible adaptive observations.ETS is a first order approximation of the ET;it requires just one calculation of a transformation matrix,increasing computational efficiency(60%-80%reduction in computational cost).An explicit mathematical formulation of the ETS gradient is derived and described.Both the ET and ETS methods are applied to the Hurricane Irene(2011) case and a heavy rainfall case for comparison.The numerical results imply that the sensitive areas estimated by the ETS and ET are similar.However,ETS is much more efficient,particularly when the resolution is higher and the number of ensemble members is larger. 展开更多
关键词 adaptive observation high impact weather ensemble transform
下载PDF
Comparison of Nonlinear Local Lyapunov Vectors with Bred Vectors, Random Perturbations and Ensemble Transform Kalman Filter Strategies in a Barotropic Model 被引量:3
5
作者 Jie FENG Ruiqiang DING +1 位作者 Jianping LI Deqiang LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第9期1036-1046,共11页
The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to ... The breeding method has been widely used to generate ensemble perturbations in ensemble forecasting due to its simple concept and low computational cost. This method produces the fastest growing perturbation modes to catch the growing components in analysis errors. However, the bred vectors (BVs) are evolved on the same dynamical flow, which may increase the dependence of perturbations. In contrast, the nonlinear local Lyapunov vector (NLLV) scheme generates flow-dependent perturbations as in the breeding method, but regularly conducts the Gram-Schmidt reorthonormalization processes on the perturbations. The resulting NLLVs span the fast-growing perturbation subspace efficiently, and thus may grasp more com- ponents in analysis errors than the BVs. In this paper, the NLLVs are employed to generate initial ensemble perturbations in a barotropic quasi-geostrophic model. The performances of the ensemble forecasts of the NLLV method are systematically compared to those of the random pertur- bation (RP) technique, and the BV method, as well as its improved version--the ensemble transform Kalman filter (ETKF) method. The results demonstrate that the RP technique has the worst performance in ensemble forecasts, which indicates the importance of a flow-dependent initialization scheme. The ensemble perturbation subspaces of the NLLV and ETKF methods are preliminarily shown to catch similar components of analysis errors, which exceed that of the BVs. However, the NLLV scheme demonstrates slightly higher ensemble forecast skill than the ETKF scheme. In addition, the NLLV scheme involves a significantly simpler algorithm and less computation time than the ETKF method, and both demonstrate better ensemble forecast skill than the BV scheme. 展开更多
关键词 ensemble forecasting bred vector nonlinear local Lyapunov vector ensemble transform Kalman filter
下载PDF
Impact of Assimilating Radiances with the WRFDA ETKF/3DVAR Hybrid System on Prediction of Two Typhoons in 2012 被引量:1
6
作者 许冬梅 黄向宇 +2 位作者 王洪利 Arthur P.MIZZI 闵锦忠 《Journal of Meteorological Research》 SCIE CSCD 2015年第1期28-40,共13页
The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/t... The impacts of AMSU-A and IASI(Infrared Atmospheric Sounding Interferometer) radiances assimilation on the prediction of typhoons Vicente and Saola(2012) are studied by using the ensemble transform Kalman filter/three-dimensional variational(ETKF/3DVAR) Hybrid system for the Weather Research and Forecasting(WRF) model. The experiment without assimilating radiance data in 3DVAR is compared with two experiments using the 3DVAR and ETKF/3DVAR hybrid systems to assimilate AMSU-A radiance,respectively. The results show that AMSU-A radiance data have slight positive impacts on track forecasts of the 3DVAR system. When the ETKF/3DVAR hybrid system is employed, typhoon track forecast skills are greatly improved. For 36-h forecasts, the hybrid system has a lower root-mean-square error for wind and temperature at most levels, and specific humidity at low levels, compared to 3DVAR. It is also found that, on average, the use of the IASI radiance data along with AMSU-A radiance data in the hybrid system further increases the track, wind, and specific humidity forecast accuracy compared to the experiment without IASI radiance assimilation. 展开更多
关键词 hybrid system ETKF ensemble spread radiance data typhoon tracks
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部