Industry-university-research institute cooperation has important strategic significance and practical value for cultivating the innovation ability of graduate students.Taking Guangxi University of Chinese Medicine as ...Industry-university-research institute cooperation has important strategic significance and practical value for cultivating the innovation ability of graduate students.Taking Guangxi University of Chinese Medicine as an example,this paper analyzed the current status of the joint cultivation of industry-university-research institute,and explored an effective way to cultivate top-notch innovative talents with innovative spirit,entrepreneurial awareness and innovative entrepreneurial ability,in order to maximally stimulate talents to create the vitality of traditional Chinese medicine.展开更多
Under the guidance of Education Informatization 2.0 with the policy background of“prioritizing the development of education,speed up the education modernization,and build an education powerhouse”,major universities ...Under the guidance of Education Informatization 2.0 with the policy background of“prioritizing the development of education,speed up the education modernization,and build an education powerhouse”,major universities have responded to the policy,and built a batch of smart classrooms in line with the development of university teaching,laying a solid foundation for promoting university teaching reformation.The author complied the necessity of smart classroom construction from the theoretical level,as well as the current construction status of the smart classroom at home and abroad,and finally,this paper takes Guangxi University of Finance and Economics as an example to analyze the teaching advantages of the school,how to promote the deep integration of information technology in education and teaching,and put forward a powerful plan for the construction of the smart classroom in school teaching,and the practical application of group discussion in smart classroom as an example to discuss the smart teaching.This kind of classroom teaching will provide a reference for leaders,students and teachers.展开更多
AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine visio...AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.展开更多
Objective This study aimed to investigate the potential relationship between urinary metals copper(Cu),arsenic(As),strontium(Sr),barium(Ba),iron(Fe),lead(Pb)and manganese(Mn)and grip strength.Methods We used linear re...Objective This study aimed to investigate the potential relationship between urinary metals copper(Cu),arsenic(As),strontium(Sr),barium(Ba),iron(Fe),lead(Pb)and manganese(Mn)and grip strength.Methods We used linear regression models,quantile g-computation and Bayesian kernel machine regression(BKMR)to assess the relationship between metals and grip strength.Results In the multimetal linear regression,Cu(β=−2.119),As(β=−1.318),Sr(β=−2.480),Ba(β=0.781),Fe(β=1.130)and Mn(β=−0.404)were significantly correlated with grip strength(P<0.05).The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was−1.007(95%confidence interval:−1.362,−0.652;P<0.001)when each quartile of the mixture of the seven metals was increased.Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength,with Cu,As and Sr being negatively associated with grip strength levels.In the total population,potential interactions were observed between As and Mn and between Cu and Mn(P_(interactions) of 0.003 and 0.018,respectively).Conclusion In summary,this study suggests that combined exposure to metal mixtures is negatively associated with grip strength.Cu,Sr and As were negatively correlated with grip strength levels,and there were potential interactions between As and Mn and between Cu and Mn.展开更多
Objective:To evaluate the health effects of sugary beverage consumption among adolescent students in Guangxi.Methods:In three cities of Guangxi(Nanning,Liuzhou,and Guilin),we investigated the consumption of sugary bev...Objective:To evaluate the health effects of sugary beverage consumption among adolescent students in Guangxi.Methods:In three cities of Guangxi(Nanning,Liuzhou,and Guilin),we investigated the consumption of sugary beverages by distributing a self-administered Functional Assessment Questionnaire of Life Health System and a Dietary Behavior Questionnaire(this paper analyzes only the part of sugary beverage consumption)to adolescent students in four schools,aiming to find out the general health status of the students and also to assess the effects of sugary beverages on the functional system health of adolescent students.Results:A total of 953 adolescent students between the ages of 14 and 24 were surveyed.Among them,46.17%consumed sugary beverages once a week;37.46%consumed them 2-3 times;11.52%consumed them more than 3 times;and 4.83%consumed them every day.The mean score of Functional Assessment Questionnaire of Life Health System was 32.There was a positive correlation between the frequency of consumption of sugary beverages and the overall systemic function assessment score(P<0.05),and the rank of the total score elevated by 0.314 times for each increase in the level of consumption.Compared to those who drink sugary beverages at least once a day,drinking them once a week showed a statistically significant difference(P<0.05).However,there was no statistically significant difference between drinking 2-3 times a week and more than 3 times a week(P>0.05).The correlation between consuming sugary beverages once a week and 2-3 times a week and endocrine system scores was also statistically significant(P<0.05).Conclusion:More than half of the students in the surveyed areas consumed sugary beverages two or more times a week,and the higher the frequency of consumption,the higher the scores of systemic function assessment.Health education on sugar reduction among adolescents should be strengthened.展开更多
This study focuses on the master of arts education in higher education institutions in Guangxi Zhuang Autonomous Region of China,explores the path of integrating Guangxi Zhuang’s intangible cultural heritage with the...This study focuses on the master of arts education in higher education institutions in Guangxi Zhuang Autonomous Region of China,explores the path of integrating Guangxi Zhuang’s intangible cultural heritage with the teaching of master of arts,and puts forward the teaching mode of“thinking guidance-autonomous judgement-program construction.”A theoretical model of innovative transformation of intangible cultural heritage is also summarized.Through the development of this study,it is expected to further enrich the practical teaching mechanism of master of arts education in Chinese universities and form a master of arts teaching model with strong local cultural characteristics.At the same time,the teaching reform based on the integration of Guangxi Zhuang’s intangible cultural heritage and master of arts education also has strong practical significance for promoting the inheritance and innovation of Chinese intangible cultural heritage,promoting the development of cultural and creative industries,and serving the economic and social development of Guangxi.展开更多
The traditional musical instrument of minorities converges the evolution of ethnic group culture and history,and ethnic musical instruments are a core component of minority culture.The traditional instruments of Guang...The traditional musical instrument of minorities converges the evolution of ethnic group culture and history,and ethnic musical instruments are a core component of minority culture.The traditional instruments of Guangxi minorities are rich and varied,and an all-round cultural inheritance and protection mechanism should be used for ethnic musical instruments,so that the performance form of classical musical instruments of minorities can be more widely understood and mastered.Therefore,in this paper,we discuss the specific practice idea of the inheritance and development of classical musical instruments of Guangxi minorities,and facilitate the innovation of development path of ethnic musical instruments by taking the inheritance form of integrating musical instruments with operas.展开更多
The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics indu...The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics industry.As the social economy and transportation develop,the consumption ability of residents has been improved,and the high demand for fruits and vegetables has promoted the transportation of fruits and vegetables to meet the development conditions of the future fruit and vegetable industry.The study of fruit and vegetable logistics distribution can improve the efficiency of fruit and vegetable distribution,improve the construction of fruit and vegetable distribution system,and also meet the needs of people for different kinds of fruits and vegetables.Taking Guangxi fruit and vegetable distribution as an example,through empirical investigation,this paper studies the existing problems in the development of logistics distribution in the fruit and vegetable distribution industry,and puts forward corresponding measures and countermeasures according to the problems,so as to innovate the fruit and vegetable distribution mode in Guangxi Zhuang Autonomous Region.展开更多
Tetanus is the only non-communicable disease among vaccine-preventable infectious diseases.It is caused by an infection with Clostridium tetanus bacterium and is characterized by continuous tonic contraction and parox...Tetanus is the only non-communicable disease among vaccine-preventable infectious diseases.It is caused by an infection with Clostridium tetanus bacterium and is characterized by continuous tonic contraction and paroxysmal spasms of skeletal muscles throughout the body[1].展开更多
Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this s...Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.展开更多
One of the goals and requirements of China’s educational modernization includes prioritizing,guiding,and promoting the social service capabilities of universities.The teaching of practical courses in design majors in...One of the goals and requirements of China’s educational modernization includes prioritizing,guiding,and promoting the social service capabilities of universities.The teaching of practical courses in design majors in colleges and universities has long been plagued by problems such as being“out of touch with the market and social needs”and“ignoring the cultivation of creativity.”It fails to meet the goals and requirements of educational modernization.This article takes the“Fundamentals of Styling and Comprehensive Expression”course offered by the School of Design of Guangxi Normal University as an entry point to study the industry-university-research education method that combines“social service”with the teaching of design professional practical courses.It also attempts to improve“works,products,and public goods”through the establishment of the theoretical model of“product”and the analysis of practical application paths is carried out to solve the problems existing in the traditional teaching of the design major,enhance the social service capabilities of the design major,promote talent employment and industry and social development,and carry out teaching reform attempts.展开更多
Approximately 50%-70%of patients with hepatocellular carcinoma experience recurrence within five years after curative hepatic resection or ablation.As a result,many patients receive adjuvant therapy after curative res...Approximately 50%-70%of patients with hepatocellular carcinoma experience recurrence within five years after curative hepatic resection or ablation.As a result,many patients receive adjuvant therapy after curative resection or ablation in order to prolong recurrence-free survival.The therapy recommended by national guidelines can differ,and guidelines do not specify when to initiate adjuvant therapy or how long to continue it.These and other unanswered questions around adjuvant therapies make it difficult to optimize them and determine which may be more appropriate for a given type of patient.These questions need to be addressed by clinicians and researchers.展开更多
Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electroni...Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.展开更多
The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches....The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensiona...Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.展开更多
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr...Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.展开更多
BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained...BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.展开更多
As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in pra...As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.展开更多
BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has sho...BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.展开更多
基金Innovation Project of Guangxi Graduate Education(JGY2020108,JGY2019103)。
文摘Industry-university-research institute cooperation has important strategic significance and practical value for cultivating the innovation ability of graduate students.Taking Guangxi University of Chinese Medicine as an example,this paper analyzed the current status of the joint cultivation of industry-university-research institute,and explored an effective way to cultivate top-notch innovative talents with innovative spirit,entrepreneurial awareness and innovative entrepreneurial ability,in order to maximally stimulate talents to create the vitality of traditional Chinese medicine.
文摘Under the guidance of Education Informatization 2.0 with the policy background of“prioritizing the development of education,speed up the education modernization,and build an education powerhouse”,major universities have responded to the policy,and built a batch of smart classrooms in line with the development of university teaching,laying a solid foundation for promoting university teaching reformation.The author complied the necessity of smart classroom construction from the theoretical level,as well as the current construction status of the smart classroom at home and abroad,and finally,this paper takes Guangxi University of Finance and Economics as an example to analyze the teaching advantages of the school,how to promote the deep integration of information technology in education and teaching,and put forward a powerful plan for the construction of the smart classroom in school teaching,and the practical application of group discussion in smart classroom as an example to discuss the smart teaching.This kind of classroom teaching will provide a reference for leaders,students and teachers.
基金Supported by the Innovat ion and Entrepreneurship Project for College Students of the First Affiliated Hospital of Guangxi Medical University in 2022 and the Development and Application of Appropriate Medical and Health Technologies in Guangxi(No.S2021093).
文摘AIM:To investigate the frequency and associated factors of accommodation and non-strabismic binocular vision dysfunction among medical university students.METHODS:Totally 158 student volunteers underwent routine vision examination in the optometry clinic of Guangxi Medical University.Their data were used to identify the different types of accommodation and nonstrabismic binocular vision dysfunction and to determine their frequency.Correlation analysis and logistic regression were used to examine the factors associated with these abnormalities.RESULTS:The results showed that 36.71%of the subjects had accommodation and non-strabismic binocular vision issues,with 8.86%being attributed to accommodation dysfunction and 27.85%to binocular abnormalities.Convergence insufficiency(CI)was the most common abnormality,accounting for 13.29%.Those with these abnormalities experienced higher levels of eyestrain(χ2=69.518,P<0.001).The linear correlations were observed between the difference of binocular spherical equivalent(SE)and the index of horizontal esotropia at a distance(r=0.231,P=0.004)and the asthenopia survey scale(ASS)score(r=0.346,P<0.001).Furthermore,the right eye's SE was inversely correlated with the convergence of positive and negative fusion images at close range(r=-0.321,P<0.001),the convergence of negative fusion images at close range(r=-0.294,P<0.001),the vergence facility(VF;r=-0.234,P=0.003),and the set of negative fusion images at far range(r=-0.237,P=0.003).Logistic regression analysis indicated that gender,age,and the difference in right and binocular SE did not influence the emergence of these abnormalities.CONCLUSION:Binocular vision abnormalities are more prevalent than accommodation dysfunction,with CI being the most frequent type.Greater binocular refractive disparity leads to more severe eyestrain symptoms.
基金supported by the National Natural Science Foundation of China[rant Nos.81960583,81760577,81560523 and 82260629]Major Science and Technology Projects in Guangxi[GKAA22399 and AA22096026]+3 种基金the Guangxi Science and Technology Development Project[Grant Nos.AD 17129003 and 18050005]the Guangxi Natural Science Foundation for Innovation Research Team[2019GXNSFGA245002]the Innovation Platform and Talent Plan in Guilin[20220120-2]the Guangxi Scholarship Fund of Guangxi Education Department of China。
文摘Objective This study aimed to investigate the potential relationship between urinary metals copper(Cu),arsenic(As),strontium(Sr),barium(Ba),iron(Fe),lead(Pb)and manganese(Mn)and grip strength.Methods We used linear regression models,quantile g-computation and Bayesian kernel machine regression(BKMR)to assess the relationship between metals and grip strength.Results In the multimetal linear regression,Cu(β=−2.119),As(β=−1.318),Sr(β=−2.480),Ba(β=0.781),Fe(β=1.130)and Mn(β=−0.404)were significantly correlated with grip strength(P<0.05).The results of the quantile g-computation showed that the risk of occurrence of grip strength reduction was−1.007(95%confidence interval:−1.362,−0.652;P<0.001)when each quartile of the mixture of the seven metals was increased.Bayesian kernel function regression model analysis showed that mixtures of the seven metals had a negative overall effect on grip strength,with Cu,As and Sr being negatively associated with grip strength levels.In the total population,potential interactions were observed between As and Mn and between Cu and Mn(P_(interactions) of 0.003 and 0.018,respectively).Conclusion In summary,this study suggests that combined exposure to metal mixtures is negatively associated with grip strength.Cu,Sr and As were negatively correlated with grip strength levels,and there were potential interactions between As and Mn and between Cu and Mn.
文摘Objective:To evaluate the health effects of sugary beverage consumption among adolescent students in Guangxi.Methods:In three cities of Guangxi(Nanning,Liuzhou,and Guilin),we investigated the consumption of sugary beverages by distributing a self-administered Functional Assessment Questionnaire of Life Health System and a Dietary Behavior Questionnaire(this paper analyzes only the part of sugary beverage consumption)to adolescent students in four schools,aiming to find out the general health status of the students and also to assess the effects of sugary beverages on the functional system health of adolescent students.Results:A total of 953 adolescent students between the ages of 14 and 24 were surveyed.Among them,46.17%consumed sugary beverages once a week;37.46%consumed them 2-3 times;11.52%consumed them more than 3 times;and 4.83%consumed them every day.The mean score of Functional Assessment Questionnaire of Life Health System was 32.There was a positive correlation between the frequency of consumption of sugary beverages and the overall systemic function assessment score(P<0.05),and the rank of the total score elevated by 0.314 times for each increase in the level of consumption.Compared to those who drink sugary beverages at least once a day,drinking them once a week showed a statistically significant difference(P<0.05).However,there was no statistically significant difference between drinking 2-3 times a week and more than 3 times a week(P>0.05).The correlation between consuming sugary beverages once a week and 2-3 times a week and endocrine system scores was also statistically significant(P<0.05).Conclusion:More than half of the students in the surveyed areas consumed sugary beverages two or more times a week,and the higher the frequency of consumption,the higher the scores of systemic function assessment.Health education on sugar reduction among adolescents should be strengthened.
基金2023 Innovation Project of Guangxi Graduate Education“Innovation Transformation·Integration of Industry and Education-Research on the Integration Path of Zhuang Intangible Cultural Heritage and Master of Arts Course Teaching”(Project number:JGY2023052)2023 Special Project of Guangxi 14th Five-Year Plan for Educational Science“Revitalisation of Non-Heritage-Integration of Industry and Education-Research on the Service of Regional Economic Development of Design Professional Innovation and Entrepreneurship Education in Guangxi Colleges and Universities”(Project number:2023ZJY1836)。
文摘This study focuses on the master of arts education in higher education institutions in Guangxi Zhuang Autonomous Region of China,explores the path of integrating Guangxi Zhuang’s intangible cultural heritage with the teaching of master of arts,and puts forward the teaching mode of“thinking guidance-autonomous judgement-program construction.”A theoretical model of innovative transformation of intangible cultural heritage is also summarized.Through the development of this study,it is expected to further enrich the practical teaching mechanism of master of arts education in Chinese universities and form a master of arts teaching model with strong local cultural characteristics.At the same time,the teaching reform based on the integration of Guangxi Zhuang’s intangible cultural heritage and master of arts education also has strong practical significance for promoting the inheritance and innovation of Chinese intangible cultural heritage,promoting the development of cultural and creative industries,and serving the economic and social development of Guangxi.
文摘The traditional musical instrument of minorities converges the evolution of ethnic group culture and history,and ethnic musical instruments are a core component of minority culture.The traditional instruments of Guangxi minorities are rich and varied,and an all-round cultural inheritance and protection mechanism should be used for ethnic musical instruments,so that the performance form of classical musical instruments of minorities can be more widely understood and mastered.Therefore,in this paper,we discuss the specific practice idea of the inheritance and development of classical musical instruments of Guangxi minorities,and facilitate the innovation of development path of ethnic musical instruments by taking the inheritance form of integrating musical instruments with operas.
文摘The logistics transportation and distribution of fruits and vegetables has become one of the important links for people to obtain food,and it is also an important direction and emerging challenge in the logistics industry.As the social economy and transportation develop,the consumption ability of residents has been improved,and the high demand for fruits and vegetables has promoted the transportation of fruits and vegetables to meet the development conditions of the future fruit and vegetable industry.The study of fruit and vegetable logistics distribution can improve the efficiency of fruit and vegetable distribution,improve the construction of fruit and vegetable distribution system,and also meet the needs of people for different kinds of fruits and vegetables.Taking Guangxi fruit and vegetable distribution as an example,through empirical investigation,this paper studies the existing problems in the development of logistics distribution in the fruit and vegetable distribution industry,and puts forward corresponding measures and countermeasures according to the problems,so as to innovate the fruit and vegetable distribution mode in Guangxi Zhuang Autonomous Region.
基金supported by Guangxi Health Commission Project [No.Z20200514]Guangxi Science and Technology Base and Talent Project [No.AD22035052]。
文摘Tetanus is the only non-communicable disease among vaccine-preventable infectious diseases.It is caused by an infection with Clostridium tetanus bacterium and is characterized by continuous tonic contraction and paroxysmal spasms of skeletal muscles throughout the body[1].
基金National Natural Science Foundation of China [grant no. 82060610]National Natural Science Foundation of China [grant no. 82103899]+2 种基金Guangxi Scientific and Technological Key Project[Gui Ke AB19245038]Guangxi Scientific and Technological Key Project [Guike 2022AC23005, 2022AC20031,2022JJA141110]Science and Technology Project of Nanning [20223051]。
文摘Objective The mode of human immunodeficiency virus(HIV) transmission via injection drug use(IDU)still exists, and the recent shift in IDU-related transmission of HIV infection is largely unknown. The purpose of this study was to analyze the spatiotemporal sources and dynamics of HIV-1 transmission through IDU in Guangxi.Methods We performed a molecular epidemiological investigation of infections across Guangxi from2009 to 2019. Phylogenetic and Bayesian time-geographic analyses of HIV-1 sequences were performed to confirm the characteristics of transmission between IDUs in combination with epidemiological data.Results Among the 535 subjects, CRF08_BC(57.4%), CRF01_AE(28.4%), and CRF07_BC(10.7%) were the top 3 HIV strains;72.6% of infections were linked to other provinces in the transmission network;93.6% of sequence-transmitted strains were locally endemic, with the rest coming from other provinces,predominantly Guangdong and Yunnan;92.1% of the HIV transmission among people who inject drugs tended to be transmitted between HIV-positive IDUs.Conclusion HIV recombinants were high diversity, and circulating local strains were the transmission sources among IDUs in Guangxi. However, there were still cases of IDUs linked to other provinces.Coverage of traditional prevention strategies should be expanded, and inter-provincial collaboration between Guangxi, Yunnan, and Guangdong provinces should be strengthened.
基金A phased research result of the 2023 Guangxi Normal University Education and Teaching Reform Project“Research on the Social Service-Oriented Industry-University-Research Education Method for College Design Majors”(Project number:2023JGA34)A phased research result of the 2023 Innovation Project of Guangxi Graduate Education“Innovation Transformation·Integration of Industry and Education-Research on the Integration Path of Zhuang Intangible Cultural Heritage and Master of Arts Course Teaching”(Project number:JGY2023052)。
文摘One of the goals and requirements of China’s educational modernization includes prioritizing,guiding,and promoting the social service capabilities of universities.The teaching of practical courses in design majors in colleges and universities has long been plagued by problems such as being“out of touch with the market and social needs”and“ignoring the cultivation of creativity.”It fails to meet the goals and requirements of educational modernization.This article takes the“Fundamentals of Styling and Comprehensive Expression”course offered by the School of Design of Guangxi Normal University as an entry point to study the industry-university-research education method that combines“social service”with the teaching of design professional practical courses.It also attempts to improve“works,products,and public goods”through the establishment of the theoretical model of“product”and the analysis of practical application paths is carried out to solve the problems existing in the traditional teaching of the design major,enhance the social service capabilities of the design major,promote talent employment and industry and social development,and carry out teaching reform attempts.
基金the Specific Research Project of Guangxi for Research Bases and Talents,No.GuiKe AD22035057the National Natural Science Foundation of China,No.82060510 and No.82260569.
文摘Approximately 50%-70%of patients with hepatocellular carcinoma experience recurrence within five years after curative hepatic resection or ablation.As a result,many patients receive adjuvant therapy after curative resection or ablation in order to prolong recurrence-free survival.The therapy recommended by national guidelines can differ,and guidelines do not specify when to initiate adjuvant therapy or how long to continue it.These and other unanswered questions around adjuvant therapies make it difficult to optimize them and determine which may be more appropriate for a given type of patient.These questions need to be addressed by clinicians and researchers.
基金This work is financially supported by the National Natural Science Foundation of China(52303036)the Natural Science Foundation of Guangxi Province(2020GXNSFAA297028)+4 种基金the Guangxi Science and Technology Base and Talent Special Project(GUIKE AD23026179)the International Science&Technology Cooperation Project of Chengdu(2021-GH03-00009-HZ)the Program of Innovative Research Team for Young Scientists of Sichuan Province(22CXTD0019)the Natural Science Foundation of Sichuan Province(2023NSFSC0986)the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(Sklpme2023-3-18).
文摘Electromagnetic interference shielding(EMI SE)modules are the core com-ponent of modern electronics.However,the tra-ditional metal-based SE modules always take up indispensable three-dimensional space inside electronics,posing a major obstacle to the integra-tion of electronics.The innovation of integrating 3D-printed conformal shielding(c-SE)modules with packaging materials onto core electronics offers infinite possibilities to satisfy ideal SE func-tion without occupying additional space.Herein,the 3D printable carbon-based inks with various proportions of graphene and carbon nanotube nanoparticles are well-formulated by manipulating their rheological peculiarity.Accordingly,the free-constructed architectures with arbitrarily-customized structure and multifunctionality are created via 3D printing.In particular,the SE performance of 3D-printed frame is up to 61.4 dB,simultaneously accompanied with an ultralight architecture of 0.076 g cm^(-3) and a superhigh specific shielding of 802.4 dB cm3 g^(-1).Moreover,as a proof-of-concept,the 3D-printed c-SE module is in situ integrated into core electronics,successfully replacing the traditional metal-based module to afford multiple functions for electromagnetic compatibility and thermal dissipa-tion.Thus,this scientific innovation completely makes up the blank for assembling carbon-based c-SE modules and sheds a brilliant light on developing the next generation of high-performance shielding materials with arbitrarily-customized structure for integrated electronics.
基金Project supported by the National Natural Science Foundation of China(Nos.11832002 and 12072201)。
文摘The snap-through behaviors and nonlinear vibrations are investigated for a bistable composite laminated cantilever shell subjected to transversal foundation excitation based on experimental and theoretical approaches.An improved experimental specimen is designed in order to satisfy the cantilever support boundary condition,which is composed of an asymmetric region and a symmetric region.The symmetric region of the experimental specimen is entirely clamped,which is rigidly connected to an electromagnetic shaker,while the asymmetric region remains free of constraint.Different motion paths are realized for the bistable cantilever shell by changing the input signal levels of the electromagnetic shaker,and the displacement responses of the shell are collected by the laser displacement sensors.The numerical simulation is conducted based on the established theoretical model of the bistable composite laminated cantilever shell,and an off-axis three-dimensional dynamic snap-through domain is obtained.The numerical solutions are in good agreement with the experimental results.The nonlinear stiffness characteristics,dynamic snap-through domain,and chaos and bifurcation behaviors of the shell are quantitatively analyzed.Due to the asymmetry of the boundary condition and the shell,the upper stable-state of the shell exhibits an obvious soft spring stiffness characteristic,and the lower stable-state shows a linear stiffness characteristic of the shell.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
基金the financial support from the National Natural Science Foundation of China(No.52109119)the Guangxi Natural Science Foundation(No.2021GXNSFBA075030)+2 种基金the Guangxi Science and Technology Project(No.Guike AD20325002)the Chinese Postdoctoral Science Fund Project(No.2022 M723408)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(China Institute of Water Resources and Hydropower Research)(No.IWHR-SKL-202202).
文摘Mechanical excavation,blasting,adjacent rockburst and fracture slip that occur during mining excavation impose dynamic loads on the rock mass,leading to further fracture of damaged surrounding rock in three-dimensional high-stress and even causing disasters.Therefore,a novel complex true triaxial static-dynamic combined loading method reflecting underground excavation damage and then frequent intermittent disturbance failure is proposed.True triaxial static compression and intermittent disturbance tests are carried out on monzogabbro.The effects of intermediate principal stress and amplitude on the strength characteristics,deformation characteristics,failure characteristics,and precursors of monzogabbro are analyzed,intermediate principal stress and amplitude increase monzogabbro strength and tensile fracture mechanism.Rapid increases in microseismic parameters during rock loading can be precursors for intermittent rock disturbance.Based on the experimental result,the new damage fractional elements and method with considering crack initiation stress and crack unstable stress as initiation and acceleration condition of intermittent disturbance irreversible deformation are proposed.A novel three-dimensional disturbance fractional deterioration model considering the intermediate principal stress effect and intermittent disturbance damage effect is established,and the model predicted results align well with the experimental results.The sensitivity of stress states and model parameters is further explored,and the intermittent disturbance behaviors at different f are predicted.This study provides valuable theoretical bases for the stability analysis of deep mining engineering under dynamic loads.
基金supported by the National Natural Science Foundation of China(21872040,22162004)the Excellent Scholars and Innovation Team of Guangxi Universities,the Innovation Project of Guangxi Graduate Education(YCBZ2022038)the High-performance Computing Platform of Guangxi University.
文摘Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation.
基金Supported by National Natural Science Foundation of China,No.82260785.
文摘BACKGROUND Bladder cancer(BC)is the most common urological tumor.It has a high recur-rence rate,displays tutor heterogeneity,and resists chemotherapy.Furthermore,the long-term survival rate of BC patients has remained unchanged for decades,which seriously affects the quality of patient survival.To improve the survival rate and prognosis of BC patients,it is necessary to explore the molecular mechanisms of BC development and progression and identify targets for treatment and intervention.Transmembrane 9 superfamily member 1(TM9SF1),also known as MP70 and HMP70,is a member of a family of nine transmembrane superfamily proteins,which was first identified in 1997.TM9SF1 can be expressed in BC,but its biological function and mechanism in BC are not clear.AIM To investigate the biological function and mechanism of TM9SF1 in BC.Overexpression of TM9SF1 increased the in vitro proliferation,migration,and invasion of BC cells by promoting the entry of BC cells into the G2/M phase.Silencing of TM9SF1 inhibited in vitro proliferation,migration,and invasion of BC cells and blocked BC cells in the G1 phase.CONCLUSION TM9SF1 may be an oncogene in BC.
基金supported by the National Natural Science Foundation of China(Nos.51922023,61874011)Fundamental Research Funds for the Central Universities(E1EG6804)
文摘As an emerging technology to convert environmental high-entropy energy into electrical energy,triboelectric nanogenerator(TENG)has great demands for further enhancing the service lifetime and output performance in practical applications.Here,an ultra-robust and high-performance rotational triboelectric nanogenerator(R-TENG)by bearing charge pumping is proposed.The R-TENG composes of a pumping TENG(P-TENG),an output TENG(O-TENG),a voltage-multiplying circuit(VMC),and a buffer capacitor.The P-TENG is designed with freestanding mode based on a rolling ball bearing,which can also act as the rotating mechanical energy harvester.The output low charge from the P-TENG is accumulated and pumped to the non-contact O-TENG,which can simultaneously realize ultralow mechanical wear and high output performance.The matched instantaneous power of R-TENG is increased by 32 times under 300 r/min.Furthermore,the transferring charge of R-TENG can remain 95%during 15 days(6.4×10^(6)cycles)continuous operation.This work presents a realizable method to further enhance the durability of TENG,which would facilitate the practical applications of high-performance TENG in harvesting distributed ambient micro mechanical energy.
基金Supported by 2020 Guangxi Zhuang Autonomous Region Health Care Commission Self-Financing Research Projects,No.Z202000962023 Guangxi University Young and Middle-Aged Teachers’Basic Research Ability Improvement Project,No.2023KY0091+1 种基金National Natural Science Foundation of China,No.82260241the Natural Science Foundation of Guangxi Province,No.2015GXNSFAA139171 and No.2020GXNSFAA259053.
文摘BACKGROUND Alzheimer’s disease(AD)is a neurodegenerative condition characterized by oxidative stress and neuroinflammation.Tanshinone ⅡA(Tan-ⅡA),a bioactive compound isolated from Salvia miltiorrhiza plants,has shown potential neuroprotective effects;however,the mechanisms underlying such a function remain unclear.AIM To investigate potential Tan-ⅡA neuroprotective effects in AD and to elucidate their underlying mechanisms.METHODS Hematoxylin and eosin staining was utilized to analyze structural brain tissue morphology.To assess changes in oxidative stress and neuroinflammation,we performed enzyme-linked immunosorbent assay and western blotting.Additionally,the effect of Tan-ⅡA on AD cell models was evaluated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay.Genetic changes related to the long non-coding RNA(lncRNA)nuclear-enriched abundant transcript 1(NEAT1)/microRNA(miRNA,miR)-291a-3p/member RAS oncogene family Rab22a axis were assessed through reverse transcription quantitative polymerase chain reaction.RESULTS In vivo,Tan-ⅡA treatment improved neuronal morphology and attenuated oxidative stress and neuroinflammation in the brain tissue of AD mice.In vitro experiments showed that Tan-ⅡA dose-dependently ameliorated the amyloid-beta 1-42-induced reduction of neural stem cell viability,apoptosis,oxidative stress,and neuroinflammation.In this process,the lncRNA NEAT1-a potential therapeutic target-is highly expressed in AD mice and downregulated via Tan-ⅡA treatment.Mechanistically,NEAT1 promotes the transcription and translation of Rab22a via miR-291a-3p,which activates nuclear factor kappa-B(NF-κB)signaling,leading to activation of the pro-apoptotic B-cell lymphoma 2-associated X protein and inhibition of the anti-apoptotic B-cell lymphoma 2 protein,which exacerbates AD.Tan-ⅡA intervention effectively blocked this process by inhibiting the NEAT1/miR-291a-3p/Rab22a axis and NF-κB signaling.CONCLUSION This study demonstrates that Tan-ⅡA exerts neuroprotective effects in AD by modulating the NEAT1/miR-291a-3p/Rab22a/NF-κB signaling pathway,serving as a foundation for the development of innovative approaches for AD therapy.