To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability...To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.展开更多
Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south...Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south. And the water quality of the Luanhe River is the best, the proportion of I - III is about 60%, and the water quality of the Tuhaimajia River is the worst, the proportion of >V exceeds 60%. According to the trend of water quality change, the improvement of Shandong Province in Tuhaimajia River system is the most obvious, and proportion of >V water decreased from 100% to about 30%.展开更多
When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on ...When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.展开更多
Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and sl...Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau展开更多
Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,...Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,euhedral gypsums were observed in the boundary clay.The authors suppose that most of the pyrite framboids formed just below the redox boundary and stopped growing after entering the lower water column.The result indicates that it was probably lower dysoxia condition in the temporal ocean.Moreover,the authors also presume that some pyrite was oxidated to sulfates accompanying the fluctuation of redox condition,which would probably be the origin of the negative sulfur isotopes of gypsum and CAS reported before.In addition,sulfur isotope of framboidal pyrite suggests that sulfur is originated from bacterial sulfate reduction in anoxic condition.Therefore, this study confirms that the ocean was widely anoxic during the Permian-Triassic transitional period. However,the redox condition in temporal ocean was probably not stable,with short-term fluctuations.展开更多
The properties of woody debris(WD) vary across different forests under various soil conditions.Owing to the relatively shallow and low amounts of soils on karst terrains, it is necessary to determine the WD carbon inv...The properties of woody debris(WD) vary across different forests under various soil conditions.Owing to the relatively shallow and low amounts of soils on karst terrains, it is necessary to determine the WD carbon inventory of karst forests. In this study, we recorded WD with a basal diameter for standing snags and the largeend diameter for fallen logs of ≥ 1 cm. The carbon density of WD in a secondary karst mixed evergreen and deciduous broad-leaved forest that had been clear-cut 55 years ago in southwestern China were inventoried in a 2 ha plot. Woody debris carbon density calculated using specific gravity and carbon concentration was 4.07 Mg C ha^-1. Woody debris with diameters ≥ 10 cm(coarse WD) constituted 53.8% of total carbon storage whereas WD < 10 cm in diameters(fine WD) accounted for more pieces of WD(89.9%).Lithocarpus confinis contributed the most WD carbon(26.5%). Intermediate decayed WD was relatively more abundant, but WD with final decay contributed the least to the total pieces of WD(6.7%). The contribution of WD to carbon storage of karst forest was low compared to other forests worldwide. Significant positive correlations were found between WD carbon and biodiversity(R^2= 0.035,p < 0.01) and elevation(R^2= 0.047, p < 0.01) and negative correlations was found in outcrop coverage(R^2= 0.034, p <0.01). Further studies are needed to elucidate the ecological functions of WD to better understand their roles in maintaining biodiversity, enhancing productivity, and controlling vegetation degradation in karst forest ecosystems.展开更多
With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication o...With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.展开更多
Higher fullerenes(C84,C90,C92,C94 and C96) were successfully isolated from the Soxhlet extract of the synthetical "Graphote Smokes" soot(GS sample) by using a big Cosmosil Buckysep(Phenomenex) column(250 mm ...Higher fullerenes(C84,C90,C92,C94 and C96) were successfully isolated from the Soxhlet extract of the synthetical "Graphote Smokes" soot(GS sample) by using a big Cosmosil Buckysep(Phenomenex) column(250 mm × 10 mm) with a large injection.The fractions isolated have been determined by high performance liquid chro-matography(HPLC) and laser desorption mass spectrometry(LDMS).It is found that there are different fullerenes molecules in different fractions with retention time.The result indicates that fullerenes do exist in GS samples.Also,it excludes the suspicion to some extent that fullerene molecules might be generated by the laser desorption process in the LDMS.In addition,it also provides the experimental basis for the study of natural higher fullerenes and might be helpful to figure out the question if higher fullerenes do exist in the natural samples.展开更多
[Objective] The research aimed to initially study degradation effect of the CODc, in sewage by two psychrotrophs. [Method] Two psychrotrophs were isolated from the activated sludge of wastewater treatment plant in Tia...[Objective] The research aimed to initially study degradation effect of the CODc, in sewage by two psychrotrophs. [Method] Two psychrotrophs were isolated from the activated sludge of wastewater treatment plant in Tianjin Konggang Economic Area. CODc, degradation ability of the screened psychrotroph was analyzed in simulated domestic wastewater at 6℃. [Result] K 36 was identified as Comamonas testosterone, and K 38 was identified as Serratia fonticola. CODcr degradation abilities of the two strains were different in test. COOcr removal rates of the K 36 and K 38 respectively reached up to 23% and 53%. The measured result of growth rate suggested that two psychrotrophs both had high activities at low temperature. [ Conclusion] K 36 and K 38 had potentials in wastewater treatment application.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.51279140,51249010)National Basic Research Program of China(No.2010CB428406)
文摘To manage water resources effectively, a multiscale assessment of the vulnerability of water resources on the basis of political boundaries and watersheds is necessary. This study addressed issues on the vulnerability of water resources and provided a multiscale comparison of spatial heterogeneity under a climate change background. Using improved quantitative evaluation methods of vulnerabil- ity, the Theil index and the Shannon-Weaver index, we evaluated the vulnerability of water resources and its spatial heterogeneity in the Haihe River Basin in four scales, namely, second-class water resource regions (Class II WRRs), third-class water resource regions (Class III WRRs), Province-Class II WRRs, and Province-Class III WRRs. Results show that vulnerability enhances from the north to south in the different scales, and shows obvious spatial heterogeneity instead of moving toward convergence in multiscale assessment results. Among the Class II WRRs, the Tuhai-Majia River is the most vulnerable area, and the vulnerability of the Luanhe River is lower than that of the north of the Haihe River Basin, which in turn is lower than that of the south of the Haihe River Basin. In the scales of Class III WRRs and Province-Class III WRRs, the vulnerability shows obvious spatial heterogeneity and diversity measured by the Theil index and the Shannon-Weaver index. Multiscale vulnerability assessment results based on political boundaries and the watersheds of the Haihe River Basin innovatively provided in this paper are important and useful to characterize the real spatial pattern of the vulnerability of water resources and improve water resource management.
文摘Haihe River is one of the 7 largest rivers in China. The problem of water pollution in Haihe River Basin is serious. The water quality of Haihe River Basin is generally the best in the north and the worst in the south. And the water quality of the Luanhe River is the best, the proportion of I - III is about 60%, and the water quality of the Tuhaimajia River is the worst, the proportion of >V exceeds 60%. According to the trend of water quality change, the improvement of Shandong Province in Tuhaimajia River system is the most obvious, and proportion of >V water decreased from 100% to about 30%.
基金supported by the Project on Excellent Post-Graduate Dissertation of Hohai University,Nanjing,China(422003508)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX23_0187+2 种基金422003287)the National Natural Science Foundation of China(52250410359)Young Elite Scientists Sponsorship Program by Jiangsu Provincial Association for Science and Technology(TJ-2023-043).
文摘When the upper chord beam of the beam-string structure(BSS)is made of concrete-filled steel tube(CFST),its overall stiffness will change greatly with the construction of concrete placement,which will have an impact on the design of the tensioning plans and selection of control measures for the BSS.In order to accurately obtain the bending stiffness of CFST beam and clarify its impact on the mechanical properties of composite BSS during con-struction,the influence of some factors such as height-width ratio,wall thickness of steel tube,elasticity modulus of concrete,and friction coefficient on the bending stiffness are analyzed parametrically by the numerical simula-tion technology based on an actual project.The calculation formula of the equivalent bending stiffness of CFST is also established through mathematical statistical simulation.Then,the equivalent bending stiffness is introduced into the construction and use stages of the composite BSS,respectively,and the mechanical properties such as prestress-tensioning control value,structural deformation,and internal force of key members are comparatively analyzed when adopting two different construction plans.Moreover,the optimal construction plan of concrete placementfirst and then prestress-tensioning is proposed.
基金financially supported by the Fundamental Research Funds for the Central Universities (2015ZCQ-SB-03)the National Natural Science Foundation of China (51309007)the National Key Research and Development Project of China (2016YFC0501704)
文摘Soil moisture, a critical variable in the hydrologic cycle, is highly influenced by vegetation restoration type. However, the relationship between spatial variation of soil moisture, vegetation restoration type and slope length is controversial. Therefore, soil moisture across soil layers(0-400 cm depth) was measured before and after the rainy season in severe drought(2015) and normal hydrological year(2016) in three vegetation restoration areas(artificial forestland, natural forestland and grassland), on the hillslopes of the Caijiachuan Catchment in the Loess area, China. The results showed that artificial forestland had the lowest soil moisture and most severe water deficit in 100-200 cm soil layers. Water depletion was higher in artificial and natural forestlands than in natural grassland. Moreover, soil moisture in the shallow soil layers(0-100 cm) under the three vegetation restoration types did not significantly vary with slope length, but a significant increase with slope length was observed in deep soil layers(below 100 cm). In2015, a severe drought hydrological year, higher water depletion was observed at lower slope positions under three vegetation restoration types due to higher transpiration and evapotranspiration and unlikely recharge from upslope runoff. However, in 2016, a normal hydrological year, there was lower water depletion, even infiltration recharge at lower slope positions, indicating receiving a large amount of water from upslope. Vegetation restoration type, precipitation, slope length and soil depth during a rainy season, in descending order of influence, had significant effects on soil moisture. Generally, natural grassland is more beneficial for vegetation restoration than natural and artificial forestlands, and the results can provide useful information for understanding hydrological processes and improving vegetation restoration practices on the Loess Plateau
基金supported by China Scholarship Council,National Natural Science Foundation of China(No40572020)Doctoral Program of Higher Education(No20040290005)
文摘Pyrite framboids were found in the Permian-Triassic boundary at Meishan Section,while their sulfur isotopes were determined.The majority of framboids is less than 5μm in diameter,with some large-sized framboids.Also,euhedral gypsums were observed in the boundary clay.The authors suppose that most of the pyrite framboids formed just below the redox boundary and stopped growing after entering the lower water column.The result indicates that it was probably lower dysoxia condition in the temporal ocean.Moreover,the authors also presume that some pyrite was oxidated to sulfates accompanying the fluctuation of redox condition,which would probably be the origin of the negative sulfur isotopes of gypsum and CAS reported before.In addition,sulfur isotope of framboidal pyrite suggests that sulfur is originated from bacterial sulfate reduction in anoxic condition.Therefore, this study confirms that the ocean was widely anoxic during the Permian-Triassic transitional period. However,the redox condition in temporal ocean was probably not stable,with short-term fluctuations.
基金financially supported by National Natural Science Foundation of China (31870462)National Key Research & Development Program of China (2016YFC0502304 and 2016YFC0502101)
文摘The properties of woody debris(WD) vary across different forests under various soil conditions.Owing to the relatively shallow and low amounts of soils on karst terrains, it is necessary to determine the WD carbon inventory of karst forests. In this study, we recorded WD with a basal diameter for standing snags and the largeend diameter for fallen logs of ≥ 1 cm. The carbon density of WD in a secondary karst mixed evergreen and deciduous broad-leaved forest that had been clear-cut 55 years ago in southwestern China were inventoried in a 2 ha plot. Woody debris carbon density calculated using specific gravity and carbon concentration was 4.07 Mg C ha^-1. Woody debris with diameters ≥ 10 cm(coarse WD) constituted 53.8% of total carbon storage whereas WD < 10 cm in diameters(fine WD) accounted for more pieces of WD(89.9%).Lithocarpus confinis contributed the most WD carbon(26.5%). Intermediate decayed WD was relatively more abundant, but WD with final decay contributed the least to the total pieces of WD(6.7%). The contribution of WD to carbon storage of karst forest was low compared to other forests worldwide. Significant positive correlations were found between WD carbon and biodiversity(R^2= 0.035,p < 0.01) and elevation(R^2= 0.047, p < 0.01) and negative correlations was found in outcrop coverage(R^2= 0.034, p <0.01). Further studies are needed to elucidate the ecological functions of WD to better understand their roles in maintaining biodiversity, enhancing productivity, and controlling vegetation degradation in karst forest ecosystems.
基金supported by the National Natural Science Foundation of China (Grant No. 40471018)the National Basic Research Program of China (973 Program, Grant No. 2002 CB412310)Hundred Talents Programme of the Chinese Academy of Sciences
文摘With the rapid social and economic development of the Taihu region, Taihu Lake now faces an increasingly severe eutrophication problem. Pollution from surrounding catchments contributes greatly to the eutrophication of water bodies in the region. Investigation of surface flow and associated mass transport for the Xitiaoxi catchment is of a significant degree of importance as the Xitiaoxi catchment is one of the major catchments within the Taihu region. A SWAT-based distributed hydrological model was established for the Xitiaoxi catchment. The model was calibrated and verified using hydrometeorological data from 1988 to 2001. The results indicate that the modeled daily and annual stream flow match the observed data both in the calibration period and the verification period, with a linear regression coefficient R2 and a coefficient e for modeled daily stream flow greater than 0.8 at Hengtangcun and Fanjiacun gauge stations. The results show that the runoff process in the Xitiaoxi catchment is affected both by rainfall and human activities (e.g., reservoirs and polder areas). Moreover, the human activities weaken flood peaks more noticeably during rainstorms. The Water balance analysis reveals the percentages of precipitation made up by surface flow, evapotranspiration, groundwater recharge' and the change of soil storage, all of which are considered useful to the further understanding of the hydrological processes in the Xitiaoxi catchment. This study provides a good base for further studies in mass transport modeling and comparison of modeling results from similar hydrological models.
基金supported by China Scholarship Council and National Natural Science Foundation ofChina (No. 40572020)
文摘Higher fullerenes(C84,C90,C92,C94 and C96) were successfully isolated from the Soxhlet extract of the synthetical "Graphote Smokes" soot(GS sample) by using a big Cosmosil Buckysep(Phenomenex) column(250 mm × 10 mm) with a large injection.The fractions isolated have been determined by high performance liquid chro-matography(HPLC) and laser desorption mass spectrometry(LDMS).It is found that there are different fullerenes molecules in different fractions with retention time.The result indicates that fullerenes do exist in GS samples.Also,it excludes the suspicion to some extent that fullerene molecules might be generated by the laser desorption process in the LDMS.In addition,it also provides the experimental basis for the study of natural higher fullerenes and might be helpful to figure out the question if higher fullerenes do exist in the natural samples.
基金Supported by Excellent Talent Support Plan Project in New Century, Ministry of Education,China(NCET-09-0586)Special Project of the Science Research in Public Welfare Industry,Ministry of Water Resources,China (201101018,201201114)Special Item of the National International Science and Technology Cooperation(S2013BGR0244)
文摘[Objective] The research aimed to initially study degradation effect of the CODc, in sewage by two psychrotrophs. [Method] Two psychrotrophs were isolated from the activated sludge of wastewater treatment plant in Tianjin Konggang Economic Area. CODc, degradation ability of the screened psychrotroph was analyzed in simulated domestic wastewater at 6℃. [Result] K 36 was identified as Comamonas testosterone, and K 38 was identified as Serratia fonticola. CODcr degradation abilities of the two strains were different in test. COOcr removal rates of the K 36 and K 38 respectively reached up to 23% and 53%. The measured result of growth rate suggested that two psychrotrophs both had high activities at low temperature. [ Conclusion] K 36 and K 38 had potentials in wastewater treatment application.