Accelerating the development of students is the basic goal of postgraduate talent cultivation.The final research results,employment situation and satisfaction of postgraduate students with school education are more im...Accelerating the development of students is the basic goal of postgraduate talent cultivation.The final research results,employment situation and satisfaction of postgraduate students with school education are more important indicators of the quality of talent cultivation in a university.For having a deeper understanding of the satisfaction of postgraduates in Harbin Institute of Technology(Weihai)in terms of motivation,tutor situation,management service and employment situation,a questionnaire survey was conducted on postgraduates.The survey results show that the overall satisfaction of postgraduates is high.In terms of studying motivation,most postgraduates think that their majors are more related to employment;in terms of professors,most of them can get along well with their professors and learn from the advantages of their professors;in terms of school management,they respond well to the"library",but think that the"dormitory"and"canteen"need further improvement;in terms of employment,most of postgraduates choose to be employed,while a few of them choose to further their studies,most of which have applied to study in domestic or foreign universities.展开更多
Graduate student recruitment publicity is a very important link in graduate student recruitment,the quality of students directly affects the quality of graduate education.Taking Harbin Institute of Technology(Weihai)a...Graduate student recruitment publicity is a very important link in graduate student recruitment,the quality of students directly affects the quality of graduate education.Taking Harbin Institute of Technology(Weihai)as the research object,this paper analyzes the internal and external factors affecting the improvement of graduate student quality in the branch campus,and carries out the corresponding countermeasures,puts forward the propaganda strategy of all-round research and recruitment,and effectively improves the quality of graduate student in the branch campus.展开更多
The burning of fossil fuels in industry results in significant carbon emissions,and the heat generated is often not fully utilized.For high-temperature industries,thermophotovoltaics(TPVs)is an effective method for wa...The burning of fossil fuels in industry results in significant carbon emissions,and the heat generated is often not fully utilized.For high-temperature industries,thermophotovoltaics(TPVs)is an effective method for waste heat recovery.This review covers two aspects of high-efficiency TPV systems and industrial waste heat applications.At the system level,representative results of TPV complete the systems,while selective emitters and photovoltaic cells in the last decade are compiled.The key points of components to improve the energy conversion efficiency are further analyzed,and the related micro/nano-fabrication methods are introduced.At the application level,the feasibility of TPV applications in high-temperature industries is shown from the world waste heat utilization situation.The potential of TPV in waste heat recovery and carbon neutrality is illustrated with the steel industry as an example.展开更多
With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial informati...With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.展开更多
Harbin Institute of Technology(HIT)was established in 1920 in Harbin,Heilongjiang,China.In 1954,HIT became one of China’s first six leading universities.Presently HIT is a member of China’s top nine University Union...Harbin Institute of Technology(HIT)was established in 1920 in Harbin,Heilongjiang,China.In 1954,HIT became one of China’s first six leading universities.Presently HIT is a member of China’s top nine University Union(C9).It is a National Key University with science and engineering as its core and has developed with management,liberal arts,economy.展开更多
Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the...Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.展开更多
A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainab...A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation proce...Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.展开更多
The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communicatio...The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.展开更多
The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topol...The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmen...Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.展开更多
It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely ...It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
Information technology education has played a more important role under the background of“Internet+”.However,a combination of education and information technology is only limited between online teaching platforms an...Information technology education has played a more important role under the background of“Internet+”.However,a combination of education and information technology is only limited between online teaching platforms and massive open online courses(MOOC).This paper proposes a visual teaching system based on cloud computing and big data techniques via combing virtual and real techniques online and offline to provide rich teaching resources for students.It can also use the digital human-computer interaction answering function to address students’questions.Additionally,it can provide a medium for young teachers to quickly improve their professional teaching skills.This paper aims to achieve a multimedia system via integrating“Internet+”technology with education to help improve talent training and abilities of young teachers.展开更多
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la...Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.展开更多
In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycl...In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.展开更多
The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were ...The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.展开更多
The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycli...The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.展开更多
基金was supported by Postgraduate Education and Teaching Reform Project of Shandong Province(SDYJG21018)Postgraduate Education and Teaching Reform Project of Harbin Institute of Technology at Weihai(WH2019002)Postgraduate Education and Teaching Reform Project of Harbin Institute of Technology(21HX1001).
文摘Accelerating the development of students is the basic goal of postgraduate talent cultivation.The final research results,employment situation and satisfaction of postgraduate students with school education are more important indicators of the quality of talent cultivation in a university.For having a deeper understanding of the satisfaction of postgraduates in Harbin Institute of Technology(Weihai)in terms of motivation,tutor situation,management service and employment situation,a questionnaire survey was conducted on postgraduates.The survey results show that the overall satisfaction of postgraduates is high.In terms of studying motivation,most postgraduates think that their majors are more related to employment;in terms of professors,most of them can get along well with their professors and learn from the advantages of their professors;in terms of school management,they respond well to the"library",but think that the"dormitory"and"canteen"need further improvement;in terms of employment,most of postgraduates choose to be employed,while a few of them choose to further their studies,most of which have applied to study in domestic or foreign universities.
基金This research was supported by Postgraduate Education and Teaching Reform Project of Shandong Province(SDYJG21018)Postgraduate Education and Teaching Reform Project of Harbin Institute of Technology at Weihai(WH2019002)Postgraduate Education and Teaching Reform Project of Harbin Institute of Technology(21HX1001).
文摘Graduate student recruitment publicity is a very important link in graduate student recruitment,the quality of students directly affects the quality of graduate education.Taking Harbin Institute of Technology(Weihai)as the research object,this paper analyzes the internal and external factors affecting the improvement of graduate student quality in the branch campus,and carries out the corresponding countermeasures,puts forward the propaganda strategy of all-round research and recruitment,and effectively improves the quality of graduate student in the branch campus.
基金supported by the National Natural Science Foundation of China(No.52227813)China Postdoctoral Science Foundation(Nos.2023M740905,2023T160164)+3 种基金National Key ResearchDevelopment Program of China(No.2022YFE0210200)Natural Science Foundation of Heilongjiang Province(No.LH2023E043)the Fundamental Research Funds for the Central Universities(Nos.2022ZFJH04,HIT.OCEF.2021023)。
文摘The burning of fossil fuels in industry results in significant carbon emissions,and the heat generated is often not fully utilized.For high-temperature industries,thermophotovoltaics(TPVs)is an effective method for waste heat recovery.This review covers two aspects of high-efficiency TPV systems and industrial waste heat applications.At the system level,representative results of TPV complete the systems,while selective emitters and photovoltaic cells in the last decade are compiled.The key points of components to improve the energy conversion efficiency are further analyzed,and the related micro/nano-fabrication methods are introduced.At the application level,the feasibility of TPV applications in high-temperature industries is shown from the world waste heat utilization situation.The potential of TPV in waste heat recovery and carbon neutrality is illustrated with the steel industry as an example.
文摘With the widespread use of Chinese globally, the number of Chinese learners has been increasing, leading to various grammatical errors among beginners. Additionally, as domestic efforts to develop industrial information grow, electronic documents have also proliferated. When dealing with numerous electronic documents and texts written by Chinese beginners, manually written texts often contain hidden grammatical errors, posing a significant challenge to traditional manual proofreading. Correcting these grammatical errors is crucial to ensure fluency and readability. However, certain special types of text grammar or logical errors can have a huge impact, and manually proofreading a large number of texts individually is clearly impractical. Consequently, research on text error correction techniques has garnered significant attention in recent years. The advent and advancement of deep learning have paved the way for sequence-to-sequence learning methods to be extensively applied to the task of text error correction. This paper presents a comprehensive analysis of Chinese text grammar error correction technology, elaborates on its current research status, discusses existing problems, proposes preliminary solutions, and conducts experiments using judicial documents as an example. The aim is to provide a feasible research approach for Chinese text error correction technology.
文摘Harbin Institute of Technology(HIT)was established in 1920 in Harbin,Heilongjiang,China.In 1954,HIT became one of China’s first six leading universities.Presently HIT is a member of China’s top nine University Union(C9).It is a National Key University with science and engineering as its core and has developed with management,liberal arts,economy.
基金supported by National Natural Science Foundation of China (NSFC 52372041, 52302087, 51772060, 51672059 and 51621091)Heilongjiang Touyan Team Program+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF.2021003)the Shanghai Aerospace Science and Technology Innovation Fund (SAST2022-60)。
文摘Polarization and conductance losses are the fundamental dielectric attenuation mechanisms for graphene-based absorbers, but it is not fully understood in revealing the loss mechanism of affect graphene itself. For the first time, the reduced graphene oxide(RGO) based absorbers are developed with regulatory absorption properties and the absorption mechanism of RGO is mainly originated from the carrier injection behavior of trace metal Fe nanosheets on graphene. Accordingly, the minimum reflection loss(RLmin) of Fe/RGO-2composite reaches-53.38 dB(2.45 mm), and the effective absorption bandwidth achieves 7.52 GHz(2.62 mm) with lower filling loading of 2 wt%. Using off-axis electron hologram testing combined with simulation calculation and carrier transport property experiments, we demonstrate here the carrier injection behavior from Fe to graphene at the interface and the induced charge accumulation and rearrangement, resulting in the increased interfacial and dipole polarization and the conductance loss. This work has confirmed that regulating the dielectric property of graphene itself by adding trace metals can not only ensure good impedance matching, but also fully exploit the dielectric loss ability of graphene at low filler content,which opens up an efficient way for designing lightweight absorbers and may be extended to other types materials.
基金supported by the Natural Science Founda-tion of Beijing(Grant No.2182017,2202017).
文摘A low-energy plasma electrolytic oxidation(LePEO)technique is developed to simultaneously improve energy efficiency and anti-corrosion.Ionic liquids(1-butyl-3-methylimidazole tetrafluoroborate(BmimBF_(4)))as sustainable corrosion inhibitors are chosen to investigate the corrosion inhibition behavior of ionic liquid(ILs)during the LePEO process for LA91 magnesium-lithium(Mg-Li)alloy.Results show that the ionic liquid BmimBF_(4)participates in the LePEO coating formation process,causing an increment in coating thickness and surface roughness.The low conductivity of the ionic liquid is responsible for the voltage and breakdown voltage increases during the LePEO with IL process(LePEO-IL).After adding BmimBF_(4),corrosion current density decreases from 1.159×10^(−4)A·cm^(−2)to 8.143×10^(−6)A·cm^(−2).The impedance modulus increases to 1.048×10^(4)Ω·cm^(−2)and neutral salt spray remains intact for 24 h.The superior corrosion resistance of the LePEO coating assisted by ionic liquid could be mainly attributed to its compact and thick barrier layer and physical absorption of ionic liquid.The ionic liquid-assisted LePEO technique provides a promising approach to reducing energy consumption and improving film performance.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金financially supported by the National Natural Science Foundation of China (No.51872058)the Supporting Program for Innovation Team of Outstanding Youth in Colleges and Universities of Shandong Province(No.2020KJA005)。
文摘Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder(CIP) with TiO_(2) was designed. Given the TiO2coating, the Z of the CIP@TiO_(2) composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO_(2) was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO_(2)composite was improved substantially, the minimum reflection loss reached-46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO_(2)showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO_(2) as about 400℃,whereas the uncoated CIP had an oxidation starting temperature of approximately 250℃. Moreover, the largest oxidation rate temperature of CIP@TiO_(2) increased to around 550℃. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.
基金supported in part by the National Natural Science Foundation of China under Grant U23A20278in part by the National Natural Science Foundation of China under Grant 62171151in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘The hybrid carrier(HC)system rooted in the carrier fusion concept is gradually garnering attention.In this paper,we study the extended hybrid carrier(EHC)multiple access scheme to ensure reliable wireless communication.By employing the EHC modulation,a power layered multiplexing framework is realized,which exhibits enhanced interference suppression capability owing to the more uniform energy distribution design.The implementation method and advantage mechanism are explicated respectively for the uplink and downlink,and the performance analysis under varying channel conditions is provided.In addition,considering the connectivity demand,we explore the non-orthogonal multiple access(NOMA)method of the EHC system and develop the EHC sparse code multiple access scheme.The proposed scheme melds the energy spread superiority of EHC with the access capacity of NOMA,facilitating superior support for massive connectivity in high mobility environments.Simulation results have verified the feasibility and advantages of the proposed scheme.Compared with existing HC multiple access schemes,the proposed scheme exhibits robust bit error rate performance and can better guarantee multiple access performance in complex scenarios of nextgeneration communications.
基金supported by National Natural Science Foundation of China(No.11975038)the National Key Research and Development Program of China(No.2022YFA1604600)。
文摘The acceleration of electrons near three-dimensional(3D)magnetic nulls is crucial to the energy conversion mechanism in the 3D magnetic reconnection process.To explore electron acceleration in a 3D magnetic null topology,we constructed a pair of 3D magnetic nulls in the PKU Plasma Test(PPT)device and observed acceleration of electrons near magnetic nulls.This study measured the plasma floating potential and ion density profiles around the 3D magnetic null.The potential wells near nulls may be related to the energy variations of electrons,so we measured the electron distribution functions(EDFs)at different spatial positions.The axial variation of EDF shows that the electrons deviate from the Maxwell distribution near magnetic nulls.With scanning probes that can directionally measure and theoretically analyze based on curve fitting,the variations of EDFs are linked to the changes of plasma potential under 3D magnetic null topology.The kinetic energy of electrons accelerated by the electric field is 6 eV(v_(e)~7v_(Alfvén-e))and the scale of the region where accelerating electrons exist is in the order of serval electron skin depths.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金supported by the National Science and Technology Major Project(2017-VI-0009-0080)the Key-Area Research and Development Program of Guangdong Province(2019B010935001)+1 种基金Shenzhen Science and Technology Plan(Project No.JSGG20210802093205015)Industry and Information Technology Bureau of Shenzhen Municipality(Project No.201806071354163490).
文摘Nickel based single crystal superalloy is currently widely used as the material for turbine blades in aerospace engines.However,metallurgical defects during the manufacturing process and damage during harsh environmental service are inevitable challenges for turbine blades.Therefore,bonding techniques play a very important role in the manufacturing and repair of turbine blades.The transient liquid phase(TLP)bonding of DD5 Ni-based single crystal superalloy was performed using the designed H1 interlayer.A new third-generation Ni-based superalloy T1 powder was mixed with H1 powder as another interlayer to improve the mechanical properties of the bonded joints.The res-ults show that,such a designed H1 interlayer is beneficial to the improvement of shear strength of DD5 alloy bonded joints by adjusting the bonding temperature and the prolongation of holding time.The maximum shear strength at room temperature of the joint with H1 interlayer reached 681 MPa when bonded at 1260℃for 3 h.The addition of T1 powder can effectively reduce holding time or relatively lower bond-ing temperature,while maintaining relatively high shear strength.When 1 wt.%T1 powder was mixed into H1 interlayer,the maximum room temperature shear strength of the joint bonded at 1260℃reached 641 MPa,which could be obtained for only 1 h.Considering the bonding temperature and the efficiency,the acceptable process parameter of H1+5 wt.%T1 interlayer was 1240℃/2 h,and the room tem-perature shear strength reached 613 MPa.
基金supported by the National Key Research and Development Program of China(2019YFA0205700)Scientific Research Projects of Colleges and Universities in Hebei Province(JZX2023004)+2 种基金Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)support from Ministry of Science and Higher Education of Russian Federation(project FFSG-2022-0001(122111700046-3),"Laboratory of perspective electrode materials for chemical power sources")support from"Yuanguang"Scholar Program of Hebei University of Technology
文摘It is well accepted that a lithiophilic interface can effectively regulate Li deposition behaviors,but the influence of the lithiophilic interface is gradually diminished upon continuous Li deposition that completely isolates Li from the lithiophilic metals.Herein,we perform in-depth studies on the creation of dynamic alloy interfaces upon Li deposition,arising from the exceptionally high diffusion coefficient of Hg in the amalgam solid solution.As a comparison,other metals such as Au,Ag,and Zn have typical diffusion coefficients of 10-20 orders of magnitude lower than that of Hg in the similar solid solution phases.This difference induces compact Li deposition pattern with an amalgam substrate even with a high areal capacity of 55 mAh cm^(-2).This finding provides new insight into the rational design of Li anode substrate for the stable cycling of Li metal batteries.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
基金supported in part by the Ideological and Political Education of Financial Decision Support System under KVSZZZ202315in part by Collaborative Education by the Ministry of Education under 220501210164954in part by Teaching Education Reform of NPU under 06410-23GZ230106。
文摘Information technology education has played a more important role under the background of“Internet+”.However,a combination of education and information technology is only limited between online teaching platforms and massive open online courses(MOOC).This paper proposes a visual teaching system based on cloud computing and big data techniques via combing virtual and real techniques online and offline to provide rich teaching resources for students.It can also use the digital human-computer interaction answering function to address students’questions.Additionally,it can provide a medium for young teachers to quickly improve their professional teaching skills.This paper aims to achieve a multimedia system via integrating“Internet+”technology with education to help improve talent training and abilities of young teachers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12204132 and 12304376)Excellent Youth Science Foundation of Shandong Province (Overseas) (Grant No.2022HWYQ-073)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.HIT.OCEF.2022042)Natural Science Foundation of Shandong Province (Grant No.ZR2023QA075)。
文摘Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process.
基金supported by the National Key Research and Development Program of China(2022YFC3801101)National Natural Science Foundation of China(52170028)+1 种基金the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(2023DX11)National Engineering Research Center for Safe Sludge Disposal and Resource Recovery(2021A003).
文摘In this work,a novel composite material based on β-cyclodextrin-immobilized sodium alginate aerogel(β-CD/NaAlg) was developed utilizing cross-linker of epichlorohydrin and applied as an adsorbent to remove tetracycline antibiotics from reclaimed wastewater.A series of characterizations were utilized to confirm the successful synthesis of the adsorbent and this β-CD/NaAlg presented a three-dimensional network at the nanoscale or microscale.Under optimal conditions(pH=4,t=8 h,β-CD:NaAlg=9,adsorbent dosage = 1.5 g·L-1),the maximum removal rate of β-CD/NaAlg to tetracycline was 70%.The adsorption behavior of tetracycline on β-CD/NaAlg conformed to the Freundlich isotherm model(R2=0.9977) and the pseudo-second-order kinetic model(R^(2)=0.9993).Moreover,the adsorbent still removed 55.3% of tetracycline after five cycles.Specially,the adsorbent was integrated with ultrafiltration to adsorb tetracycline antibiotics from simulated reclaimed wastewater,and the removal rate of tetracycline reached 78.9% within 2 h.The existence of Cr(Ⅵ) had a negligible impact on tetracycline removal,while the presence of humic acid exhibited a promoting effect.The possible adsorption mechanisms were also elucidated through X-ray photoelectron spectroscopy and density functional theory analysis.In summary,β-CD/NaAlg represents an environmentally friendly,efficient,and sustainable adsorbent for removing tetracycline antibiotics from reclaimed water.
基金supported by the National Key R&D Program of China(No.2022YFB3404204)the National Natural Science Foundation of China(NSFC)under Grant Nos.U2241232,U2341253 and 52375317.
文摘The squeeze casting method with local pressure compensation was proposed to form a flywheel housing component with a weight of 35 kg.The numerical simulation,microstructure observation and phase characterization were performed,and the influence of local pressure compensation on feeding of thick-wall position,microstructure and mechanical properties of the formed components were discussed.Results show that the molten metal keeps a good fluidity and the filling is complete during the filling process.Although the solidification at thick-wall positions of the mounting ports is slow,the local pressure compensation effectively realizes the local forced feeding,significantly eliminating the shrinkage cavity defects.In the microstructure of AlSi9Mg alloy,α-Al primarily consists of fragmented dendrites and rosette grains,while eutectic Si predominantly comprises needles and short rods.The impact of local pressure compensation on strength is relatively minimal,yet its influence on elongation is considerable.Following local pressure compensation,the average elongation at the compensated areas is 9.18%,which represents a 44.90%higher than that before compensation.The average tensile strength is 209.1 MPa,and the average yield strength is 100.6 MPa.The local pressure compensation can significantly reduce or even eliminate the internal defects in the 35 kg large-weight components formed by squeeze casting.
基金supported by the fund of the National Natural Science Foundation of China(51875127,52275322).
文摘The Mg-7Gd-4Y-2Zn-0.5Zr alloy chips were successfully recycled through isothermal sintering and equal channel angular pressing(ECAP).The mechanical properties and microstructure evolution of samples during the recycling process were studied in detail.The eutectic phases in the as-cast alloy transform into long period-stacking ordered(LPSO)phases after homogenization,which can improve the plasticity of the material.After isothermal sintering,the density of the sample is lower than that of the homogenized sample,and oxide films are formed adjacent to the bonding interface of the metal chips.Hence,the plasticity of the sintered sample is poor.Dense samples are fabricated after ECAP.Although the grains are not refined compared to the sintered sample,the microstructure becomes more uniform due to recrystallization.Fiber interdendritic LPSO phase and kinked 14H-LPSO phase are formed in the alloy due to the shear deformation during the ECAP process,which improves the strength and plasticity of the sample significantly.Furthermore,the basal texture is weakened due to the Bc route of the ECAP process,which can increase the Schmid factor of the basal slip system and improve the elongation of the sample.After 2 ECAP passes,the fully densified recycled billet shows superior mechanical properties with an ultimate tensile strength of 307.1 MPa and elongation of 11.1%.