The authors regret to report a mistake in the text and an associated change necessary to section 3.6 of the paper.On page 1766 in the right-hand column,line 4,the heading of subsection 3.6“GmWRKY40 represses the expr...The authors regret to report a mistake in the text and an associated change necessary to section 3.6 of the paper.On page 1766 in the right-hand column,line 4,the heading of subsection 3.6“GmWRKY40 represses the expression of PR genes”should be changed to“GmWRKY40 promotes the expression of PR genes”.The authors would like to apologize for any inconvenience caused.展开更多
Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield. Previous studies have shown that soybean varieties with dwarf features and a short ...Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield. Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice. Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency. The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018. Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days. Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.展开更多
In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black...In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black-kernel wheat genetic resources such as Jizi 439 were identified by SDS-PAGE electrophoresis detection.The results showed that 11 materials were lack of SGP-A1,and no materials had SGP-B1 and SGP-D1 deletion.Seven materials were identified to have an amylose content more than 30% of the total starch.A total of 12 materials were selected for the determination of resistant starch content,and five materials were found to have a high resistant starch content.The above results lay a foundation for wheat breeding for high resistant starch content.展开更多
Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution event...Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.展开更多
Soybean(Glycine max)is a major oil and feed crop worldwide.Soybean mosaic virus(SMV)is a globally occurring disease that severely reduces the yield and quality of soybean.Here,we characterized the role of the clock ge...Soybean(Glycine max)is a major oil and feed crop worldwide.Soybean mosaic virus(SMV)is a globally occurring disease that severely reduces the yield and quality of soybean.Here,we characterized the role of the clock gene TIMING OF CAB EXPRESSION 1b(GmTOC1b)in the resistance of soybean to SMV.Homozygous Gmtoc1b mutants exhibited increased tolerance to SMV strain SC3 due to the activation of programmed cell death triggered by a hypersensitive response.Transcriptome deep sequencing and RT-qPCR analysis suggested that GmTOC1b likely regulates the expression of target genes involved in the salicylic acid(SA)signaling pathway.GmTOC1b binds to the promoter of GmWRKY40,which encodes a protein that activates the expression of SA-mediated defense-related genes.Moreover,we revealed that the GmTOC1bH1 haplotype,which confers increased tolerance to SMV,was artificially selected in improved cultivars from the Northern and Huang-Huai regions of China.Our results therefore identify a previously unknown SMV resistance component that could be deployed in the molecular breeding of soybean to enhance SMV resistance.展开更多
Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a h...Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a high-quality reference genome(Vrad_JL7)that was479.35 Mb in size,with a contig N50 length of 10.34 Mb.A total of 40,125 protein-coding genes were annotated,representing96.9%of the genetic region.We also sequenced 217 accessions,mainly landraces and cultivars from China,and identified 2,229,343 high-quality single-nucleotide polymorphisms(SNPs).Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines.Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road.We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences.Among the genes,83.1%were core genes and 16.9%were variable.Presence/absence variation(PAV)events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring.Genomewide association studies(GWASs)revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits,including a SNP in the coding region of the SWEET10 homolog(jg24043)involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits.This high-quality reference genome and pan-genome will provide insights into mung bean breeding.展开更多
文摘The authors regret to report a mistake in the text and an associated change necessary to section 3.6 of the paper.On page 1766 in the right-hand column,line 4,the heading of subsection 3.6“GmWRKY40 represses the expression of PR genes”should be changed to“GmWRKY40 promotes the expression of PR genes”.The authors would like to apologize for any inconvenience caused.
基金funded by the National Natural Science Foundation of China(31271753)the Agricultural Science and Technology Innovation Program(ASTIP)of Chinese Academy of Agricultural Sciences(CAASZDRW202003-1)。
文摘Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield. Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice. Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency. The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018. Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days. Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.
基金Supported by National Science and Technology Support Program(2013BAD01B02-11)National Natural Science Foundation of China(31201209)+1 种基金National Key Research and Development Project(2016YFD0100102-5)Science and Technology Support Program of Hebei Province(16226320D)
文摘In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black-kernel wheat genetic resources such as Jizi 439 were identified by SDS-PAGE electrophoresis detection.The results showed that 11 materials were lack of SGP-A1,and no materials had SGP-B1 and SGP-D1 deletion.Seven materials were identified to have an amylose content more than 30% of the total starch.A total of 12 materials were selected for the determination of resistant starch content,and five materials were found to have a high resistant starch content.The above results lay a foundation for wheat breeding for high resistant starch content.
基金The National Natural Science Foundation of China(grant nos.32388201,32300512 and U22A20467)“Strategic Priority Research Program”of the Chinese Academy of Sciences(grant no.XDA24030501)+1 种基金CAS Project for Young Scientists in Basic Research(YSBR-078)the Xplorer Prize。
文摘Gene innovation plays an essential role in trait evolution.Rhizobial symbioses,the most important N2-fixing agent in agricultural systems that exists mainly in Leguminosae,is one of the most attractive evolution events.However,the gene innovations underlying Leguminosae root nodule symbiosis(RNS)remain largely unknown.Here,we investigated the gene gain event in Leguminosae RNS evolution through comprehensive phylogenomic analyses.We revealed that Leguminosae-gain genes were acquired by gene duplication and underwent a strong purifying selection.Kyoto Encyclopedia of Genes and Genomes analyses showed that the innovated genes were enriched in flavonoid biosynthesis pathways,particular downstream of chalcone synthase(CHS).Among them,Leguminosae-gain typeⅡchalcone isomerase(CHI)could be further divided into CHI1A and CHI1B clades,which resulted from the products of tandem duplication.Furthermore,the duplicated CHI genes exhibited exon–intron structural divergences evolved through exon/intron gain/loss and insertion/deletion.Knocking down CHI1B significantly reduced nodulation in Glycine max(soybean)and Medicago truncatula;whereas,knocking down its duplication gene CHI1A had no effect on nodulation.Therefore,Leguminosae-gain typeⅡCHI participated in RNS and the duplicated CHI1A and CHI1B genes exhibited RNS functional divergence.This study provides functional insights into Leguminosae-gain genetic innovation and sub-functionalization after gene duplication that contribute to the evolution and adaptation of RNS in Leguminosae.
基金the National Natural Science Foundation of China(32001502,32001507)the China Postdoctoral Science Foundation(2020M682655)+3 种基金the top ten critical priorities of Agricultural Science and Technology Innovations for the 14th Five-Year Plan of Guangdong Province(2022SDZG05)Science and Technology Innovation Team of Soybean Modern Seed Industry In Hebei Province(21326313D-4)Innovation Research Project of Coarse Cereals Specialty in Guizhou Province[2019[4012]]the Regional First-class Discipline of Ecology in Guizhou Province(XKTJ[2020]22).
文摘Soybean(Glycine max)is a major oil and feed crop worldwide.Soybean mosaic virus(SMV)is a globally occurring disease that severely reduces the yield and quality of soybean.Here,we characterized the role of the clock gene TIMING OF CAB EXPRESSION 1b(GmTOC1b)in the resistance of soybean to SMV.Homozygous Gmtoc1b mutants exhibited increased tolerance to SMV strain SC3 due to the activation of programmed cell death triggered by a hypersensitive response.Transcriptome deep sequencing and RT-qPCR analysis suggested that GmTOC1b likely regulates the expression of target genes involved in the salicylic acid(SA)signaling pathway.GmTOC1b binds to the promoter of GmWRKY40,which encodes a protein that activates the expression of SA-mediated defense-related genes.Moreover,we revealed that the GmTOC1bH1 haplotype,which confers increased tolerance to SMV,was artificially selected in improved cultivars from the Northern and Huang-Huai regions of China.Our results therefore identify a previously unknown SMV resistance component that could be deployed in the molecular breeding of soybean to enhance SMV resistance.
基金supported by the National Key R&D Program of China(2019YFD1000700/2019YFD1000702)the China Agricultural Research System(CARS-08-G3)+2 种基金the Key Research and Development Program of Hebei(21326305D)the Hebei Agriculture Research System(HBCT2018070203)the Hebei Talent Project.
文摘Mung bean is an economically important legume crop species that is used as a food,consumed as a vegetable,and used as an ingredient and even as a medicine.To explore the genomic diversity of mung bean,we assembled a high-quality reference genome(Vrad_JL7)that was479.35 Mb in size,with a contig N50 length of 10.34 Mb.A total of 40,125 protein-coding genes were annotated,representing96.9%of the genetic region.We also sequenced 217 accessions,mainly landraces and cultivars from China,and identified 2,229,343 high-quality single-nucleotide polymorphisms(SNPs).Population structure revealed that the Chinese accessions diverged into two groups and were distinct from non-Chinese lines.Genetic diversity analysis based on genomic data from 750 accessions in 23 countries supported the hypothesis that mung bean was first domesticated in south Asia and introduced to east Asia probably through the Silk Road.We constructed the first pan-genome of mung bean germplasm and assembled 287.73 Mb of non-reference sequences.Among the genes,83.1%were core genes and 16.9%were variable.Presence/absence variation(PAV)events of nine genes involved in the regulation of the photoperiodic flowering pathway were identified as being under selection during the adaptation process to promote early flowering in the spring.Genomewide association studies(GWASs)revealed 2,912 SNPs and 259 gene PAV events associated with 33 agronomic traits,including a SNP in the coding region of the SWEET10 homolog(jg24043)involved in crude starch content and a PAV event in a large fragment containing 11 genes for color-related traits.This high-quality reference genome and pan-genome will provide insights into mung bean breeding.