Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the pr...Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance.展开更多
It has been known that the lack of excellent corrosion resistance is the key problem restricting the wide application of Mg−Li alloys.Based on a quantity of literature about corrosion behavior of Mg−Li alloys,this rev...It has been known that the lack of excellent corrosion resistance is the key problem restricting the wide application of Mg−Li alloys.Based on a quantity of literature about corrosion behavior of Mg−Li alloys,this review elaborates the factors affecting the corrosion behavior of Mg−Li alloys and the processing methods for improving corrosion resistance.The corrosion characteristics of Mg−Li alloys are described firstly.Then,it is explained that the grain size,orientation,second phase,and surface film strongly influence corrosion performance,which can be tailored by alloying,plastic deformation,and heat treatment.Further in-depth discussion about the corrosion mechanisms for Mg−Li alloys was also presented.Finally,important points of improving corrosion resistance are suggested.展开更多
With the increasing demand of rare earth metals in functional materials,recovery of rare earth elements(REEs)from secondary resources has become important for the green economy transition.Molten salt electrolysis has ...With the increasing demand of rare earth metals in functional materials,recovery of rare earth elements(REEs)from secondary resources has become important for the green economy transition.Molten salt electrolysis has the advantages of low water consumption and low hazardous waste during REE recovery.This review systematically summarizes the separation and electroextraction of REEs on various reactive electrodes in different molten salts.It also highlights the relationship between the formed alloy phases and electrodeposition parameters,including applied potential,current,and ion concentration.Moreover,the feasibility of using LiF–NaF–KF electrolyte to recover REEs is evaluated through thermodynamic analysis.Problems related to REE separation/recovery the choice of electrolyte are discussed in detail to realize the low-energy and high current efficiency of practical applications.展开更多
Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg-9Li-3Al(wt%,LA93)alloy.The influences of carbonate on the morphology,struct...Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg-9Li-3Al(wt%,LA93)alloy.The influences of carbonate on the morphology,structure,and phase composition of the coating were investigated by scanning electron microscopy,energy dispersive spectrometry,X-ray diffraction,and X-ray photoelectron spectroscopy.The corrosion resistance of the coating was evaluated by electrochemical experiment,hydrogen evolution,and immersion test.The results showed that the addition of carbonate resulted in a denser coating with increased hardness,and the corrosion-resistant Li_(2)CO_(3) phase was formed.Electrochemical experiments showed that compared with the coating without carbonate,the corrosion potential of the carbonate coating positively shifted(24 mV),and the corrosion current density was reduced by approximately an order of magnitude.The coating with carbonate addition possessed a high corrosion resistance and long-term protection capability.展开更多
The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr during heat treatment and its influence on damping and mechanical properties are reported in this work.Prior to heat treatment,the alloy consisted of a-Mg matrix ...The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr during heat treatment and its influence on damping and mechanical properties are reported in this work.Prior to heat treatment,the alloy consisted of a-Mg matrix and lamellar 14H LPSO phases.After 510℃heat treatment,lamellae shortened,and their content decreased.Upon 8h heat treatment,block 18R LPSO phases formed at the grain boundaries while 14H LPSO lamellae disappeared.Presence of block 18R LPSO phases improved mechanical and damping properties of the alloy.The corresponding mechanisms of the influence of LPSO type and morphology on mechanical and damping capacities are discussed.展开更多
Based on the traditional two-layer accumulative roll bonding(TARB),the geometrical variations and mathematical relationship during the four-layer accumulative roll bonding(FARB)were derived and summarized.Furthermore,...Based on the traditional two-layer accumulative roll bonding(TARB),the geometrical variations and mathematical relationship during the four-layer accumulative roll bonding(FARB)were derived and summarized.Furthermore,the multi-layer accumulative roll bonding(MARB)technology was proposed and the geometrical variations and mathematical relationship of MARB were simultaneously derived and summarized.Experimentally,Mg-14Li-3Al-2Gd(LAGd1432)sheets were fabricated by TARB and FARB,respectively.Compared with the TARB,the FARB has a higher accumulative efficiency in terms of accumulative layers,total number of interfaces,interface spacing,total deformation and equivalent strain.Therefore,the FARB-processed sheets in lower cycles have the similar microstructure and mechanical properties of the TARB-processed sheets in higher cycles.In addition,FARB process can further break through the deformation limit of TARB process in a single cycle through adopting two-step rolling in one cycle with 50%deformation in one pass and 75%accumulative deformation in one cycle,which can effectively solve the problem of poor interface bonding of the latest interface brought by the last cycle,and thus significantly improve the phenomenon of unstable performance of the ARB-processed sheets.展开更多
In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good elect...In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.展开更多
Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using dif...Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques.While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode,underpotential deposition was observed on the reactive electrodes because of the latter's depolarization effect.The depolarization effects of the reactive electrodes on Sm showed the order Zn>Al>Ni>Cu.Sm-M(M=Al,Ni,Cu,Zn)alloys were deposited by galvanostatic and potentiostatic electrolysis.The products were fully characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM)-energy dispersive spectrometry(EDS),and the stability of the obtained M-rich compounds was determined.Finally,the relationship between the electrode potential and type of Sm-M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.展开更多
A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-...A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1% under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher p H stability than the free lipase at p H 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over55% of its initial activity.展开更多
Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method ...Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials.展开更多
The electrochemical behavior of lanthanide elements deposited on liquid zinc cathodes was studied using cyclic voltammetry(CV)and open circuit chronopotentiometry(OCP).We observed a"bimodal effect"in the equ...The electrochemical behavior of lanthanide elements deposited on liquid zinc cathodes was studied using cyclic voltammetry(CV)and open circuit chronopotentiometry(OCP).We observed a"bimodal effect"in the equilibrium deposition potentials of zinc with lanthanides.A mathematic equation is derived to illustrate the relationship between the equilibrium potential of the intermetallic compounds formed by lanthanide elements and zinc and their atomic radius.This equation is not only applicable to lanthanide elements but also hold for other elements such as alkali metal lithium,alkaline earth metal magnesium,calcium and transition metal niobium,which have crucial theoretical significance for the electrolysis of intermetallic compounds,the separation,and extraction of metals.展开更多
Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanic...Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.展开更多
The cadmium sulphide (CdS) film is grown on cadmium telluride (CdTe) nanorods (NRs) arrays by different methods such as chemical bath deposition (CBD), magnetron sputtering (MS), and homogenous precipitation (HP) tech...The cadmium sulphide (CdS) film is grown on cadmium telluride (CdTe) nanorods (NRs) arrays by different methods such as chemical bath deposition (CBD), magnetron sputtering (MS), and homogenous precipitation (HP) techniques. The impact of various deposition methods is explored in detail on the growth of CdTe/CdS composite film, the CdTe/CdS interface property, and solar cell efficiency. Compared to the CBD and HP methods, the MS method can improve the growth of the CdS on CdTe NRs with high crystalline quality. The device based on the CdS film prepared by the MS method demonstrates excellent photovoltaic performance, which has the potential for applications in solar cells.展开更多
In this study, genomic DNA of 10 Polytrichaceae plants were successfully extracted with modified CTAB method to establish an appropriate PCR reaction system of Polytriehaceae. ISSR molecular markers were used to analy...In this study, genomic DNA of 10 Polytrichaceae plants were successfully extracted with modified CTAB method to establish an appropriate PCR reaction system of Polytriehaceae. ISSR molecular markers were used to analyze the genetic diversity among 10 Polytrichaeeae plants. According to the results, a total of 7 ISSR primers were identified with polymorphism. By using the screened ISSR primers, 59 bands were amplified, including 36 polymorphic bands, and the percentage of polymorphic bands (PPB) was 61.02%. Based on the results of ISSR analysis, experimental materials were divided into two categories by UPGMA cluster analysis : Polytrichastrum longisetum ( Sw. ex Brid. ) G. Sm. was clustered into one category, and other nine Polytrichaceae plants were clustered into one category, which was basically similar to their taxonomic status. This study indicated that ISSR molecular markers could be used to investigate the phylogeneties of Polytrichaceae plants.展开更多
Under the social and historical context,the deep reasons of the two sisters escaping from their hometown and nation are discussed due to the social background,motivation,destination,route,which reflects people’s year...Under the social and historical context,the deep reasons of the two sisters escaping from their hometown and nation are discussed due to the social background,motivation,destination,route,which reflects people’s yearning for a peaceful life and the excavation of their self-courage trampling of the iron hoof of war.That’s a further sign of sisterhood.Then the personal attitudes and choices of the two sisters are analyzed as well as the return in various meanings,including the ultimate return of Pearl to the family after physical trauma,return to Chinese culture after dreaming of a“good life”in America,so as to pursue the essential return of the adopted daughter to China,etc.This kind of root-seeking exploration of the protagonists forces them to“return”in various meanings and connects the East with the West,which also symbolizes the attempt to merge their own ethnic identity.Chinese-American writers make a bold attempt to define and integrate their ethnic background of social history and make a bold attempt on the definition and integration of ethnic identity.展开更多
The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength...The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength of the bcc-structured Mg-Li alloy.Due to the semi-coherent B2 structured nanoparticles,the compressive yield strength of the as-cast Mg-13Li-9Zn alloy reaches higher than 300 MPa.Due to the solid solution strengthening of Zn and the spinodal zone,the compressive yield strength of the as-quenched Mg-13Li-15Zn(LZ1315)alloy immediately increases to 400 MPa.In addition,the as-quenched LZ1315 alloy exhibits natural aging strengthening behavior.Due to the precipitation of B2 nanoparticles,the yield strength of the peak aged alloy is up to 495 MPa.展开更多
The effects of combined addition of Y and Ce on the microstructure,mechanical properties and anisotropy of as-rolled Mg-8 Li-1 Al(LA81)alloy were studied.The combined addition of Y and Ce improves the mechanical prope...The effects of combined addition of Y and Ce on the microstructure,mechanical properties and anisotropy of as-rolled Mg-8 Li-1 Al(LA81)alloy were studied.The combined addition of Y and Ce improves the mechanical properties with a low plasticity loss by solution strengthening,dispersion strengthening,grain refinement strengthening.Mg-8 Li-1 Al-0.6 Y-0.6 Ce(LA81-0.6 Y-0.6 Ce)has better mechanical properties and shows an almost isotropy.It possesses an ultimate tensile strength of 278.7 MPa and an elongation of 15.0%.Compared to LA81 alloy,the ultimate tensile strength increases by about 17.6%with an elongation reduction of only 3.5%,and a good isotropy of ultimate tensile strength and elongation(the value of ravg is near 1).展开更多
High electromagnetic shielding performance was achieved in the Mg-9Li-3Al-1Zn alloy processed by accumulative roll bonding(ARB).The microstructure,electromagnetic interference shielding effectiveness(SE) in the freque...High electromagnetic shielding performance was achieved in the Mg-9Li-3Al-1Zn alloy processed by accumulative roll bonding(ARB).The microstructure,electromagnetic interference shielding effectiveness(SE) in the frequency of 30-1500 MHz and mechanical properties of the alloy were investigated.A model based on the shielding of the electromagnetic plane wave was used to theoretically discuss the EMI shielding mechanisms of ARB-processed alloy.Results indicate that the SE of the material increases gradually with the increase in the ARB pass.The enhanced SE can be attributed to the obvious microstructure orientation caused by ARB,and the alternative arrangement of alpha(Mg) phase and beta(Li)phase.In addition,with the increase in ARB pass,the number of interfaces between layers increases and the grain orientation of each layer tends to alignment along c-axis,which is beneficial to the reflection loss and multiple reflection loss of the incident electromagnetic wave.展开更多
Calcium phosphate(CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation(MAO) in an alkaline Na_3PO_4–Ca[C_3H_7O_6P] base solution at the different applied voltages. Scanning electron micr...Calcium phosphate(CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation(MAO) in an alkaline Na_3PO_4–Ca[C_3H_7O_6P] base solution at the different applied voltages. Scanning electron microscope and X-ray diffraction were employed to characterize the microstructure and phase composition of the coatings, respectively. The corrosion resistance of the coatings was assessed by potential dynamic polarization curves, electrochemical impedance spectroscopy and hydrogen evolution experiment in simulated body fluids solution. The friction and wear properties were evaluated by friction and wear testing machine. The results demonstrate that the coating surface is porous and mainly composed of MgO, Ca_5(PO_4)_3(OH) and CaH_2P_2O_5. With the increase in voltage, the corrosion resistance and wear resistance of the MAO coating are both enhanced. The corrosion current density of the MAO coating decreases about two orders of the magnitude compared to the substrate. Additionally, wear and corrosion mechanisms are discussed.展开更多
A new cast Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr (wt%) alloy was prepared by direct-chill semicontinuous casting technology. The microstructure, mechanical properties and thermal conductivity of the alloy in as-cast, so...A new cast Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr (wt%) alloy was prepared by direct-chill semicontinuous casting technology. The microstructure, mechanical properties and thermal conductivity of the alloy in as-cast, solid-solution treated and especially peak-aged conditions were investigated. The as-cast alloy mainly consists of α-Mg matrix, (Mg, Zn)3 RE phase and basal plane stacking faults. After proper solid-solution treatment, the microstructure becomes almost Mg-based single phase solid solution except just very few RE-riched particles. The as-cast and solid-solution treated alloys exhibit moderate tensile properties and thermal conductivity. It is noteworthy that the Mg alloy with 8 wt% multiple RE exhibits remarkable age-hardening response (AHV=35.7), which demonstrates that the multiple RE (RE = Gd, Nd, Y, Ho, Er) alloying instead of single Gd can effectively improve the age-hardening response. The peak-aged alloy has a relatively good combination of high strength/hardness (UTS (ultimate tensile strength) 〉 300 MPa; TYS (tensile yield strength)〉210 MPa; 115.3 HV), proper ductility (ε≈ 6%) and moderate thermal conductivity (52.5 W/(m K)). The relative mechanisms mainly involving aging precipitation of β″ and β" phases were discussed. The results provide a basis for development of high performance cast Mg alloys.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.展开更多
基金supported by Natural Science Foundation of Heilongjiang Province of China(E2017030,ZD2017010)National Natural Science Foundation of China(51671063,51771060,51871069)+1 种基金Fundamental Research Funds for the Central Universities(HEUCFM181002)Foundation of State Key Laboratory of Rare Earth Resources Utilization(RERU2018017).
文摘Higher strength is always the goal pursued by researchers for the structural materials,especially for the lightweight magnesium(Mg)alloys which generally have relatively low strength at present.From this aspect,the present paper reviews the recent reports of a kind of Mg alloys,i.e.Mg-RE(RE:rare earths,mainly Gd or Y)casting and wrought alloys,which have been able to achieve high strength compared with common or commercial Mg alloys,from the viewpoint and content of the alloy system,alloying constitution,preparation process,tensile strength and each of the main strengthening mechanisms.This review of recent research and developments in high-strength Mg-RE alloys is beneficial for the further design of Mg alloys with higher strength as well as excellent comprehensive performance.
基金financial supports from the Natural Science Foundation of China (Nos. 51771060, 51871068, 51971071, 52011530025)the Domain Foundation of Equipment Advance Research of the 13th Fiveyear Plan, China (No. 61409220118)+2 种基金the National Key Research and Development Program, China (No. 2021YFE0103200)the Zhejiang Province Key Research and Development Program, China (No. 2021C01086)the Open Foundation of Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, China (No. HEU10202104)。
文摘It has been known that the lack of excellent corrosion resistance is the key problem restricting the wide application of Mg−Li alloys.Based on a quantity of literature about corrosion behavior of Mg−Li alloys,this review elaborates the factors affecting the corrosion behavior of Mg−Li alloys and the processing methods for improving corrosion resistance.The corrosion characteristics of Mg−Li alloys are described firstly.Then,it is explained that the grain size,orientation,second phase,and surface film strongly influence corrosion performance,which can be tailored by alloying,plastic deformation,and heat treatment.Further in-depth discussion about the corrosion mechanisms for Mg−Li alloys was also presented.Finally,important points of improving corrosion resistance are suggested.
基金This work was supported by the National Natural Science Foundation of China(Nos.21976047,21790373,and 51774104)the Ph.D Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.3072019GIP1011)+1 种基金University and Local Integration Development Project of Yantai,China(No.2020 XDRHXMPT36)the Sino-Russian Cooperation Fund of Harbin Engineering University(No.2021HEUCRF004).
文摘With the increasing demand of rare earth metals in functional materials,recovery of rare earth elements(REEs)from secondary resources has become important for the green economy transition.Molten salt electrolysis has the advantages of low water consumption and low hazardous waste during REE recovery.This review systematically summarizes the separation and electroextraction of REEs on various reactive electrodes in different molten salts.It also highlights the relationship between the formed alloy phases and electrodeposition parameters,including applied potential,current,and ion concentration.Moreover,the feasibility of using LiF–NaF–KF electrolyte to recover REEs is evaluated through thermodynamic analysis.Problems related to REE separation/recovery the choice of electrolyte are discussed in detail to realize the low-energy and high current efficiency of practical applications.
基金the Natural Science Foundation of China (Nos.51771060,51871068,51971071,and 52011530025)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+1 种基金the Zhejiang Province Key Research and Development Program,China (No.2021C01086)the Open Foundation of Key Laboratory of Superlight Materials&Surface Technology of Ministry of Education,China (No.HEU10202104)
文摘Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg-9Li-3Al(wt%,LA93)alloy.The influences of carbonate on the morphology,structure,and phase composition of the coating were investigated by scanning electron microscopy,energy dispersive spectrometry,X-ray diffraction,and X-ray photoelectron spectroscopy.The corrosion resistance of the coating was evaluated by electrochemical experiment,hydrogen evolution,and immersion test.The results showed that the addition of carbonate resulted in a denser coating with increased hardness,and the corrosion-resistant Li_(2)CO_(3) phase was formed.Electrochemical experiments showed that compared with the coating without carbonate,the corrosion potential of the carbonate coating positively shifted(24 mV),and the corrosion current density was reduced by approximately an order of magnitude.The coating with carbonate addition possessed a high corrosion resistance and long-term protection capability.
基金This paper was supported by National Natural Science Foundation of China(51671063,51771060,51871068,51971071)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)+3 种基金Heilongjiang Province Natural Science Foundation(LH2019E081,E2017030)the Fundamental Research Funds for the Central Universities(HEUCFG201834)Harbin City Application Technology Research and Development Project(2017RAQXJ032)Project of Mudanjiang normal university(GP2020004).
文摘The transformation of LPSO type in Mg-4Y-2Er-2Zn-0.6Zr during heat treatment and its influence on damping and mechanical properties are reported in this work.Prior to heat treatment,the alloy consisted of a-Mg matrix and lamellar 14H LPSO phases.After 510℃heat treatment,lamellae shortened,and their content decreased.Upon 8h heat treatment,block 18R LPSO phases formed at the grain boundaries while 14H LPSO lamellae disappeared.Presence of block 18R LPSO phases improved mechanical and damping properties of the alloy.The corresponding mechanisms of the influence of LPSO type and morphology on mechanical and damping capacities are discussed.
基金supported by Natural Science Foundation of China(51771060,51871068,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)the Fundamental Research Funds for the Central Universities(3072020CFT1006)。
文摘Based on the traditional two-layer accumulative roll bonding(TARB),the geometrical variations and mathematical relationship during the four-layer accumulative roll bonding(FARB)were derived and summarized.Furthermore,the multi-layer accumulative roll bonding(MARB)technology was proposed and the geometrical variations and mathematical relationship of MARB were simultaneously derived and summarized.Experimentally,Mg-14Li-3Al-2Gd(LAGd1432)sheets were fabricated by TARB and FARB,respectively.Compared with the TARB,the FARB has a higher accumulative efficiency in terms of accumulative layers,total number of interfaces,interface spacing,total deformation and equivalent strain.Therefore,the FARB-processed sheets in lower cycles have the similar microstructure and mechanical properties of the TARB-processed sheets in higher cycles.In addition,FARB process can further break through the deformation limit of TARB process in a single cycle through adopting two-step rolling in one cycle with 50%deformation in one pass and 75%accumulative deformation in one cycle,which can effectively solve the problem of poor interface bonding of the latest interface brought by the last cycle,and thus significantly improve the phenomenon of unstable performance of the ARB-processed sheets.
基金supported by the National Natural Science Foundation of China(Nos.51871068,51771060,51971071,52011530025)Domain Foundation of Equipment Advance Research of 13th Five-year Plan,China(No.61409220118)+3 种基金the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1006)the Fundamental Research Funds for the Heilongjiang Universities,China(No.2020-KYYWF-0532)PhD Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072021GIP1002)Zhejiang Province Key Research and Development Plan,China(No.2021C01086)。
文摘In terms of lightweight electromagnetic interference(EMI)shielding structural materials,Mg matrix materials have proven to be the best,due to their exciting properties(e.g.low density,high specific strength,good electrical conductivity and excellent EMI shielding properties)and their wide range of applications in lightweighting in electronics,automotive and aerospace industries.Through processing,such as alloying,heat treatment,plastic deformation and composite processing,Mg matrix materials can be obtained with tailorable properties which can play a key role in designing materials for EMI shielding.This work introduces an overview of the research on the EMI shielding properties of Mg matrix materials as well as their EMI shielding mechanisms over the past few decades,focused on the influence of alloying,heat treatment,plastic deformation and composite processing for the EMI shielding properties of Mg matrix materials.At the end,conclusions and future perspectives are provided.
基金the National Natural Science Foundation of China(Nos.21976047,21790373,and 51774104)the Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities,China(No.3072019GIP1011)the Fundamental Research Funds for the Central Universities,China(No.3072020CFT1008)。
文摘Sm extraction from a LiCl-KCl melt was carried out by forming alloys on various electrodes,including Al,Ni,Cu,and liquid Zn,and the electrochemical behaviors of the resultant metal products were investigated using different electrochemical techniques.While Sm metal deposition via the conventional two-step reaction process was not noted on the inert electrode,underpotential deposition was observed on the reactive electrodes because of the latter's depolarization effect.The depolarization effects of the reactive electrodes on Sm showed the order Zn>Al>Ni>Cu.Sm-M(M=Al,Ni,Cu,Zn)alloys were deposited by galvanostatic and potentiostatic electrolysis.The products were fully characterized by X-ray diffractometry(XRD)and scanning electron microscopy(SEM)-energy dispersive spectrometry(EDS),and the stability of the obtained M-rich compounds was determined.Finally,the relationship between the electrode potential and type of Sm-M intermetallic compounds formed was assessed on the basis of the observed electrochemical properties and electrodeposits.
基金Supported by the National Basic Research Program of China(2009CB724706)
文摘A block copolymer of 2-dimethylaminoethyl methacrylate(DMAEMA) and glycidyl methacrylate(GMA)was grafted onto the surface of magnetic nanoparticles(Fe3O4) via atom transfer radical polymerization.The resultant PGMA-b-PDMAEMA-grafted-Fe3O4 magnetic nanoparticles with amino and epoxy groups were characterized by Fourier transform infrared spectroscopy, powder X-ray diffraction, thermo-gravimetric analysis, and scanning electron microscopy. Lipase from Burkholderia cepacia was successfully immobilized onto the magnetic nanoparticles by physical adsorption and covalent bonding. The immobilization capacity of the magnetic particles is 0.5 mg lipase per mg support, with an activity recovery of up to 43.1% under the optimum immobilization condition. Biochemical characterization shows that the immobilized lipase exhibits improved thermal stability, good tolerance to organic solvents with high lg P, and higher p H stability than the free lipase at p H 9.0. After six consecutive cycles, the residual activity of the immobilized lipase is still over55% of its initial activity.
基金financially supported by the China Scholarship Council,the National Natural Science Foundation of China(21976047,21790373 and 51774104)the Fundamental Research funds for the Central Universities(3072019CF1005)+1 种基金the Scientific Research and Special Foundation Heilongjiang Postdoctoral Science Foundation(LBH-Q15019,LBH-Q15020 and LBH-TZ0411)Ph.D.Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(3072019GIP1011)。
文摘Due to the unique structure of perovskite materials,their capacitance can be improved by introducing oxygen vacancy.In this paper,the LaMnO3-δ material containing oxygen vacancy was synthesized by molten salt method in KNO3-NaNO3-NaNO2 melt.The La-Mn-O crystal grows gradually in molten salt with the increase of temperature.It was confirmed that LaMnO3-δ with perovskite structure and incomplete oxygen content were synthesized by molten salt method and presented a three-dimensional shape.LaMnO3-δ stores energy by redox reaction and adsorption of OH-in electrolyte simultaneously.In comparison with the stoichiometric LaMnO3 prepared by the sol-gel method,LaMnO3-δ prepared by molten salt method proffered higher capacitance and better performance.The galvanostatic charge-discharge curve showed specific capacitance of 973.5 F/g under current density of 1 A/g in 6 M KOH.The capacitance of LaMn03-δ was 82.7%under condition of 5 A/g compared with the capacitance at the current of 1A/g,and the specific capacitances of 648.0 and 310.0 F/g were obtained after 2000 and 5000 cycles of galvanostatic charging-discharging,respectively.Molten salt synthesis method is relatively simple and suitable for industrial scale,presenting a promising prospect in the synthesis of perovskite oxide materials.
文摘The electrochemical behavior of lanthanide elements deposited on liquid zinc cathodes was studied using cyclic voltammetry(CV)and open circuit chronopotentiometry(OCP).We observed a"bimodal effect"in the equilibrium deposition potentials of zinc with lanthanides.A mathematic equation is derived to illustrate the relationship between the equilibrium potential of the intermetallic compounds formed by lanthanide elements and zinc and their atomic radius.This equation is not only applicable to lanthanide elements but also hold for other elements such as alkali metal lithium,alkaline earth metal magnesium,calcium and transition metal niobium,which have crucial theoretical significance for the electrolysis of intermetallic compounds,the separation,and extraction of metals.
基金supported by the National Natural Science Foundation of China (Nos. 51871068, 51971071, 52011530025, and U21A2049)the National Key Research and Development Program of China (No. 2021YFE0103200)+1 种基金the Zhejiang Province Key Research and Development Program, China (No. 2021C01086)the Fundamental Research Funds for the Central Universities, China (No. 3072021CFT1010)。
文摘Multi-wall carbon nanotubes reinforced Mg-14Li-1Al composite(MWCNTs/Mg-14Li-1Al) was prepared by the processes of electrophoretic deposition, friction stir processing, and cold rolling. The microstructure and mechanical properties of the composite were investigated. The results show that, the microhardness of the composite is up to HV 84.4, which is 91.38% higher than that of the as-cast matrix alloy(HV 44.1). The yield strength and ultimate tensile strength of the composite are 259 and 313 MPa, which are 135.45% and 115.86% higher than those of the as-cast matrix alloy, respectively, and a high specific strength of 221.98 k N·m/kg is obtained. In the composite, the MWCNTs serve as nucleation particles during the friction stir processing and cold rolling, causing dynamic recrystallization and grain refinement. Furthermore, MWCNTs hinder the movement of dislocations and transfer the load from the matrix alloy, thus improving the strength.
基金Project supported by Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QF018)National Natural Science Foundation of China(Grant Nos.61904098 and 11904209)Natural Science Foundation of Heilongjiang Province of China(Grant No.2017001).
文摘The cadmium sulphide (CdS) film is grown on cadmium telluride (CdTe) nanorods (NRs) arrays by different methods such as chemical bath deposition (CBD), magnetron sputtering (MS), and homogenous precipitation (HP) techniques. The impact of various deposition methods is explored in detail on the growth of CdTe/CdS composite film, the CdTe/CdS interface property, and solar cell efficiency. Compared to the CBD and HP methods, the MS method can improve the growth of the CdS on CdTe NRs with high crystalline quality. The device based on the CdS film prepared by the MS method demonstrates excellent photovoltaic performance, which has the potential for applications in solar cells.
基金Supported by Science and Technology Project of Heilongjiang Provincial Department of Education(No.12531437)
文摘In this study, genomic DNA of 10 Polytrichaceae plants were successfully extracted with modified CTAB method to establish an appropriate PCR reaction system of Polytriehaceae. ISSR molecular markers were used to analyze the genetic diversity among 10 Polytrichaeeae plants. According to the results, a total of 7 ISSR primers were identified with polymorphism. By using the screened ISSR primers, 59 bands were amplified, including 36 polymorphic bands, and the percentage of polymorphic bands (PPB) was 61.02%. Based on the results of ISSR analysis, experimental materials were divided into two categories by UPGMA cluster analysis : Polytrichastrum longisetum ( Sw. ex Brid. ) G. Sm. was clustered into one category, and other nine Polytrichaceae plants were clustered into one category, which was basically similar to their taxonomic status. This study indicated that ISSR molecular markers could be used to investigate the phylogeneties of Polytrichaceae plants.
文摘Under the social and historical context,the deep reasons of the two sisters escaping from their hometown and nation are discussed due to the social background,motivation,destination,route,which reflects people’s yearning for a peaceful life and the excavation of their self-courage trampling of the iron hoof of war.That’s a further sign of sisterhood.Then the personal attitudes and choices of the two sisters are analyzed as well as the return in various meanings,including the ultimate return of Pearl to the family after physical trauma,return to Chinese culture after dreaming of a“good life”in America,so as to pursue the essential return of the adopted daughter to China,etc.This kind of root-seeking exploration of the protagonists forces them to“return”in various meanings and connects the East with the West,which also symbolizes the attempt to merge their own ethnic identity.Chinese-American writers make a bold attempt to define and integrate their ethnic background of social history and make a bold attempt on the definition and integration of ethnic identity.
基金supported by the National Natural Science Foun-dation of China(51771060,51871068,51971071,52011530025,and U21A2049)Domain Foundation of Equipment Advance Research of 13th Five-year Plan(61409220118)+1 种基金the Fundamental Research Funds for the Central Universities(3072020CFT1006)Zhejiang Province Key Research and Development Program(2021C01086).
文摘The bcc-structured Mg-Li alloy is currently the engineering metallic material with the lowest density,but it has not been widely used due to its low strength.In this paper,alloying Zn effectively improves the strength of the bcc-structured Mg-Li alloy.Due to the semi-coherent B2 structured nanoparticles,the compressive yield strength of the as-cast Mg-13Li-9Zn alloy reaches higher than 300 MPa.Due to the solid solution strengthening of Zn and the spinodal zone,the compressive yield strength of the as-quenched Mg-13Li-15Zn(LZ1315)alloy immediately increases to 400 MPa.In addition,the as-quenched LZ1315 alloy exhibits natural aging strengthening behavior.Due to the precipitation of B2 nanoparticles,the yield strength of the peak aged alloy is up to 495 MPa.
基金supported by the National Natural Science Foundation of China(Nos.51671063,51771060 and 51871068)the Heilongjiang Province Natural Science Foundation(No.ZD2017010)+1 种基金the Fundamental Research Funds for the Central Universities(No.HEUCFG201834)the Harbin City Application Technology Research and Development Project(No.2017RAQXJ032).
文摘The effects of combined addition of Y and Ce on the microstructure,mechanical properties and anisotropy of as-rolled Mg-8 Li-1 Al(LA81)alloy were studied.The combined addition of Y and Ce improves the mechanical properties with a low plasticity loss by solution strengthening,dispersion strengthening,grain refinement strengthening.Mg-8 Li-1 Al-0.6 Y-0.6 Ce(LA81-0.6 Y-0.6 Ce)has better mechanical properties and shows an almost isotropy.It possesses an ultimate tensile strength of 278.7 MPa and an elongation of 15.0%.Compared to LA81 alloy,the ultimate tensile strength increases by about 17.6%with an elongation reduction of only 3.5%,and a good isotropy of ultimate tensile strength and elongation(the value of ravg is near 1).
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51671063,51771060,51871068,51971071)the Domain Foundation of Equipment Advance Research of 13th Five-year Plan(No.61409220118)+1 种基金the Fundamental Research Funds for the Central Universities(No.HEUCFG201834)the Harbin City Application Technology Research and Development Project(No.2017RAQXJ032).
文摘High electromagnetic shielding performance was achieved in the Mg-9Li-3Al-1Zn alloy processed by accumulative roll bonding(ARB).The microstructure,electromagnetic interference shielding effectiveness(SE) in the frequency of 30-1500 MHz and mechanical properties of the alloy were investigated.A model based on the shielding of the electromagnetic plane wave was used to theoretically discuss the EMI shielding mechanisms of ARB-processed alloy.Results indicate that the SE of the material increases gradually with the increase in the ARB pass.The enhanced SE can be attributed to the obvious microstructure orientation caused by ARB,and the alternative arrangement of alpha(Mg) phase and beta(Li)phase.In addition,with the increase in ARB pass,the number of interfaces between layers increases and the grain orientation of each layer tends to alignment along c-axis,which is beneficial to the reflection loss and multiple reflection loss of the incident electromagnetic wave.
基金supported by the National Natural Science Foundation of China(Nos.51671063,51771060 and51871068)the Key Laboratory of Lightweight and high strength structural materials of Jiangxi Province(No.20171BCD40003)+4 种基金the Research Fund for the Doctoral Program of Higher Education(No.20132304110006)Heilongjiang Province Natural Science Foundation(No.ZD2017010)the Fundamental Research Funds for the Central Universities(No.HEUCFG201834)the Harbin City Application Technology Research and Development Project(Nos.2015RQXXJ001 and 2017RAQXJ032)the Science and Technology Innovation Project(No.009-031-001)
文摘Calcium phosphate(CaP) coatings were prepared on Mg–8Li–2Ca magnesium alloy by micro-arc oxidation(MAO) in an alkaline Na_3PO_4–Ca[C_3H_7O_6P] base solution at the different applied voltages. Scanning electron microscope and X-ray diffraction were employed to characterize the microstructure and phase composition of the coatings, respectively. The corrosion resistance of the coatings was assessed by potential dynamic polarization curves, electrochemical impedance spectroscopy and hydrogen evolution experiment in simulated body fluids solution. The friction and wear properties were evaluated by friction and wear testing machine. The results demonstrate that the coating surface is porous and mainly composed of MgO, Ca_5(PO_4)_3(OH) and CaH_2P_2O_5. With the increase in voltage, the corrosion resistance and wear resistance of the MAO coating are both enhanced. The corrosion current density of the MAO coating decreases about two orders of the magnitude compared to the substrate. Additionally, wear and corrosion mechanisms are discussed.
基金supported by the Natural Science Foundation of Heilongjiang Province of China (No. E2017030)National Natural Science Foundation of China (No. 51301048)+2 种基金Foundation of State Key Laboratory of Rare Earth Resources Utilization (No. RERU2016025)Central University Foundation of Harbin Engineering University (No. GK2100260207)the Natural Science Foundation of Jiamusi University of China (No. JMSURCGG2016006)
文摘A new cast Mg-2Gd-2Nd-2Y-1Ho-1Er-0.5Zn-0.4Zr (wt%) alloy was prepared by direct-chill semicontinuous casting technology. The microstructure, mechanical properties and thermal conductivity of the alloy in as-cast, solid-solution treated and especially peak-aged conditions were investigated. The as-cast alloy mainly consists of α-Mg matrix, (Mg, Zn)3 RE phase and basal plane stacking faults. After proper solid-solution treatment, the microstructure becomes almost Mg-based single phase solid solution except just very few RE-riched particles. The as-cast and solid-solution treated alloys exhibit moderate tensile properties and thermal conductivity. It is noteworthy that the Mg alloy with 8 wt% multiple RE exhibits remarkable age-hardening response (AHV=35.7), which demonstrates that the multiple RE (RE = Gd, Nd, Y, Ho, Er) alloying instead of single Gd can effectively improve the age-hardening response. The peak-aged alloy has a relatively good combination of high strength/hardness (UTS (ultimate tensile strength) 〉 300 MPa; TYS (tensile yield strength)〉210 MPa; 115.3 HV), proper ductility (ε≈ 6%) and moderate thermal conductivity (52.5 W/(m K)). The relative mechanisms mainly involving aging precipitation of β″ and β" phases were discussed. The results provide a basis for development of high performance cast Mg alloys.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.