Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively ad...Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data.展开更多
Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is propos...Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.展开更多
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi...A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.展开更多
Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Fai...Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.展开更多
In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO...In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO2 emission values from 22 of 24 generating sets conform to the requirements, which is causing by the high performance of the flue gas desulfurization system. Much higher NOx emissions indicate that the construction of flue gas denitrition systems is necessary. PM emissions varied from 2.3 kg to 299.9 kg per hour. Total sulfur, moisture, ash and volatile content, and net caloric value of coals were investigated to elucidate the relationship between coals and air pollutant emissions.展开更多
In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are ...In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.展开更多
Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the gallopin...Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.展开更多
Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attain...Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attains widespread development. Multiple Description Coding(MDC) video applications, as a popular application in the current network, should be reasonably supported in this novel network virtualization environment. In this paper, we address this issue to assign MDC video application into virtual networks with an efficient centralized algorithm(CAMDV). Since this problem is an NP-hard problem, we design an algorithm that can effectively balance the user satisfaction and network resource cost. Previous work just builds a global multicast tree for each description to connect all the destination nodes by breadth-first search strategy or shortest path tree algorithm. But those methods could not achieve an optimal balance or a high-level user satisfaction. By introducing the hierarchical clustering scheme, our algorithm decomposes the whole mapping procedure into multicast tree construction and multipath description distribution. A serial of simulation experiments show that our centralized algorithm could achieve a better performance in balancing the user satisfaction and average mapping cost in comparison with its rivals.展开更多
We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton sol...We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.展开更多
The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this articl...The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.展开更多
In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communicat...In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.展开更多
MnO_(2)-modified Pb_(0.9625)Sm_(0.025)(Mg_(1/3)Nb_(2/3))_(0.71)Ti_(0.2)9O_(3) ceramics were prepared via a solid-state reaction approach.Results of detailed characterizations revealed that the addition of MnO_(2) has ...MnO_(2)-modified Pb_(0.9625)Sm_(0.025)(Mg_(1/3)Nb_(2/3))_(0.71)Ti_(0.2)9O_(3) ceramics were prepared via a solid-state reaction approach.Results of detailed characterizations revealed that the addition of MnO_(2) has influence on the grain size,and all samples exhibit a pure perovskite structure.As the content of manganese increases,the volume of tetragonal phase increases.The ceramics with 1.5 mol.%MnO_(2) show a high electro-strain of 0.151%at 2 kV/mm.Therefore,this study provides a new insight into the role of MnO_(2) addition in tailoring the electrical properties of the Sm-PMN-PT ceramics by acceptor doping.展开更多
A fractional frequency transmission system(FFTS)is a promising solution to offshore wind power integration,for which the hexagonal modular multilevel converter(Hexverter)is an attractive choice for power conversion.Th...A fractional frequency transmission system(FFTS)is a promising solution to offshore wind power integration,for which the hexagonal modular multilevel converter(Hexverter)is an attractive choice for power conversion.The Hexverter has recently been proposed to directly connect two three-phase systems of different frequencies and voltage amplitudes,with only six branches in the FFTS in that case.This paper examines for the first time the control scheme of the Hexverter when applied to offshore wind power integration via a FFTS.Firstly,the frequency-decoupled mathematical model of the Hexverter is deduced by introducing the double dq transformation.Then the branch energy of the Hexverter is analyzed in detail and the reactive power constraint equation is obtained.The corresponding control scheme is thoroughly discussed,including the inner loop current control,the outer loop voltage control in both grid-connected mode and passive mode,and a novel optimization method to minimize the circulating current in the Hexverter.Finally,a simulation model of offshore wind power integration via a 4-terminal FFTS based on the Hexverter is built in MATALB/Simulink to verify the feasibility of Hexverter and the effectiveness of the control scheme proposed in this paper.展开更多
Insulators on high-voltage Uansmission lines are almost the only man-made structures on the Earth's surface intended for long-term operation under strong electric fields. After samples of natural contaminant parti...Insulators on high-voltage Uansmission lines are almost the only man-made structures on the Earth's surface intended for long-term operation under strong electric fields. After samples of natural contaminant particles were collected from insulator surfaces in China, it was found that the particle diameter distribution (PDD) was mainly concentrated in the 5-50 μm range. To analyze the statistical characteristics of these particles, this work studies the physical processes of particle collision and adhesion using the theories of hydrodynamics and collision dynamics. The physical model considers coupling of the fluid field and the electric field, introduces an adhesion criterion, and establishes a particle and surface collision model. The effects of relative humidity, wind speed, aerodynamic shape, electric field type, and electric field strength on particle adhesion were analyzed. The results show that the relative humidity and wind speed have very significant effects and the influences of the electric field type and the electric field strength are obvious, but the in fluence of the aerodynamic shape is relatively weak. The simulation results support the statistical characteristics determined in this work. The physical model established here provides reference values for study of the adhesion characteristics of particles on surfaces under electric fields.展开更多
The dynamic response characteristics,including maximum jump height and unbalanced tension,of isolated-span transmission lines after ice-shedding are investigated by means of experiments.A reduced-scale modelling metho...The dynamic response characteristics,including maximum jump height and unbalanced tension,of isolated-span transmission lines after ice-shedding are investigated by means of experiments.A reduced-scale modelling method for ice-shedding from conductor lines is presented and verified with numerical simulations and full-scale test results in the literature.A parameter study on dynamic responses of isolated-span conductors under three ice-shedding scenarios,including whole span ice-shedding,partial ice-shedding and unzipping ice-shedding,is carried out by means of reduced-scale modelling tests.The effects of these parameters on the maximum jump height at typical positions and unbalanced tension in the tension tower are obtained.It is observed that the partial iceshedding scenario may be the worst situation for electrical insulation clearance rather than the whole span ice-shedding scenario.Moreover,the position of maximum jump height along the span of isolated-span transmission lines after ice-shedding could be at around 2/5 of span length,which is different from the conventional opinion that the position is at the midpoint.The results may provide a foundation for the defining of the insulation clearance for an isolated-span transmission line and the structure design of tension tower arms in an iced zone.展开更多
In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.T...In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.To address these issues,we collect and annotate the substation rotated device dataset(SRDD).Further,feature fusion and feature refinement network(F3RNet)are constructed based on the classic structure pattern of backbone-neck-head.Considering the similar appearance of electrical devices,the deconvolution fusion module(DFM)is designed to enhance the expression of feature information.The balanced feature pyramid(BFP)is embedded to aggregate the global feature.The feature refinement is constructed to adjust the original feature maps by considering the feature alignment between the anchors and devices.It can generate more accurate feature vectors.To address the problem of sample imbalance between electrical devices,the gradient harmonized mechanism(GHM)loss is utilized to adjust the weight of each sample.The ablation experiments are conducted on the SRDD dataset.F3RNet achieves the best detection performance compared with classical object detection networks.Also,it is verified that the features from global feature maps can effectively recognize the similar and small devices.展开更多
Anomaly detection in smart grid is critical to enhance the reliability of power systems. Excessive manpower has to be involved in analyzing the measurement data collected from intelligent motoring devices while perfor...Anomaly detection in smart grid is critical to enhance the reliability of power systems. Excessive manpower has to be involved in analyzing the measurement data collected from intelligent motoring devices while performance of anomaly detection is still not satisfactory. This is mainly because the inherent spatio-temporality and multi-dimensionality of the measurement data cannot be easily captured. In this paper, we propose an anomaly detection model based on encoder-decoder framework with recurrent neural network (RNN). In the model, an input time series is reconstructed and an anomaly can be detected by an unexpected high reconstruction error. Both Manhattan distance and the edit distance are used to evaluate the difference between an input time series and its reconstructed one. Finally, we validate the proposed model by using power demand data from University of California, Riverside (UCR) time series classification archive and IEEE 39 bus system simulation data. Results from the analysis demonstrate that the proposed encoder-decoder framework is able to successfully capture anomalies with a precision higher than 95%.展开更多
It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional frict...It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional friction stir welding.Thus,doubleside friction stir welding is innovatively applied to join 12-mm medium-thick 6061-T6 aluminum alloy and pure copper dissimilar plates,and the effect of welding speeds on the joint microstructure and mechanical properties of Al/Cu welds is systematically analyzed.It reveals that a sound Al/Cu joint without macroscopic defects can be achieved when the welding speed is lower than 180 mm/min,while a nonuniform relatively thick intermetallic compound(IMC)layer is formed at the Al/Cu interface,resulting in lots of local microcracks within the first-pass weld under the plunging force of the tool during friction stir welding of the second-pass,and seriously deteriorates the mechanical properties of the joint.With the increase of welding speed to more than 300 mm/min void defects appear in the joint,but the joint properties are still better than the welds performed at low welding speed conditions since a continuous uniform thin IMCs layer is formed at the Al/Cu interface.The maximum tensile strength and elongation of Al/Cu weld are,respectively,135.11 MPa and 6.06%,which is achieved at the welding speed of 400 mm/min.In addition,due to the influence of welding distortion of the first-pass weld,the secondpass weld is more prone to form void defects than the first-pass weld when the same plunge depth is applied on both sides.The double-side friction stir welding is proved to be a good method for dissimilar welding of medium-thick Al/Cu plates.展开更多
Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied system...Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.展开更多
In this work,the boron nitride(BN)nanosheets were dispersed in natural esters to fabricate the dielectric nanofluid.Microstructures and chemical compositions of the nanosized BN are determined.The stability,viscosity,...In this work,the boron nitride(BN)nanosheets were dispersed in natural esters to fabricate the dielectric nanofluid.Microstructures and chemical compositions of the nanosized BN are determined.The stability,viscosity,and thermal conductivity of the BN nanofluid,were obtained.And the dissipation factor,electrical conductivity,and relative permittivity of the BN nanofluid,were measured.The ion mobilities and migrating times of the nanofluid were measured under different volumetric fractions of BN nanosheets and temperatures.Results show that the electrical conductivity and dissipation factor of the nanofluid decreased by 54%and 48%with the addition of only 0.1%of BN nano-sheets under 110°C.Both the half-reduced carrier mobility of the nanofluid and the declined ion concentration by blocking of BN nanosheet contributed to the exponentially reduced electrical conductivity and enhanced dielectric performances of the BN nano-fluid.The suppression coefficient k is proposed to quantitatively describe the hinder effect of ion migration in nanofluids by 2D BN nanosheet.Results provide a strategy to design and develop advanced nanofluids with low-dielectric loss by aids of surface adsorption of ion and steric hindrance of 2D nanosheets.展开更多
基金supported by the State Grid Science&Technology Project(5400-202224153A-1-1-ZN).
文摘Improving the accuracy of solar power forecasting is crucial to ensure grid stability,optimize solar power plant operations,and enhance grid dispatch efficiency.Although hybrid neural network models can effectively address the complexities of environmental data and power prediction uncertainties,challenges such as labor-intensive parameter adjustments and complex optimization processes persist.Thus,this study proposed a novel approach for solar power prediction using a hybrid model(CNN-LSTM-attention)that combines a convolutional neural network(CNN),long short-term memory(LSTM),and attention mechanisms.The model incorporates Bayesian optimization to refine the parameters and enhance the prediction accuracy.To prepare high-quality training data,the solar power data were first preprocessed,including feature selection,data cleaning,imputation,and smoothing.The processed data were then used to train a hybrid model based on the CNN-LSTM-attention architecture,followed by hyperparameter optimization employing Bayesian methods.The experimental results indicated that within acceptable model training times,the CNN-LSTM-attention model outperformed the LSTM,GRU,CNN-LSTM,CNN-LSTM with autoencoders,and parallel CNN-LSTM attention models.Furthermore,following Bayesian optimization,the optimized model demonstrated significantly reduced prediction errors during periods of data volatility compared to the original model,as evidenced by MRE evaluations.This highlights the clear advantage of the optimized model in forecasting fluctuating data.
文摘Both the modeling and the load regulation capacity prediction of a supercritical power plant are investigated in this paper. Firstly, an indirect identification method based on subspace identification method is proposed. The obtained identification model is verified by the actual operation data and the dynamic characteristics of the system are well reproduced. Secondly, the model is used to predict the load regulation capacity of thermal power unit. The power, main steam pressure, main steam temperature and other parameters are simulated respectively when the unit load is going up and down. Under the actual constraints, the load regulation capacity of thermal power unit can be predicted quickly.
基金Supported by National Natural Science Foundation of China(Grant Nos.52275349,52035005)Key Research and Development Program of Shandong Province of China(Grant No.2021ZLGX01)Qilu Young Scholar Program of Shandong University of China.
文摘A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance.
基金supported by Science and Technology Project of SGCC“Research on Flat Architecture and Implementation Technology of Security and Stability Control System in Ultra Large Power Grid”(52170221000U).
文摘Security and stability control system(SSCS)in power systems involves collecting information and sending the decision from/to control stations at different layers;the tree structure of the SSCS requires more levels.Failure of a station or channel can cause all the execution stations(EXs)to be out of control.The randomness of the controllable capacity of the EXs increases the difficulty of the reliability evaluation of the SSCS.In this study,the loop designed SSCS and reliability analysis are examined for the interconnected systems.The uncertainty analysis of the controllable capacity based on the evidence theory for the SSCS is proposed.The bidirectional and loop channels are introduced to reduce the layers and stations of the existing SSCS with tree configuration.The reliability evaluation and sensitivity analysis are proposed to quantify the controllability and vulnerable components for the SSCS in different configurations.By aiming at the randomness of the controllable capacity of the EXs,the uncertainty analysis of the controllable capacity of the SSCS based on the evidence theory is proposed to quantify the probability of the SSCS for balancing the active power deficiency of the grid.
文摘In order to investigate the factual air pollutant emissions from Henan’s power sector in 2010, SO2, NOx and PM emissions from 24 generating sets from 15 coal-fired power plants have been measured. It is shown that SO2 emission values from 22 of 24 generating sets conform to the requirements, which is causing by the high performance of the flue gas desulfurization system. Much higher NOx emissions indicate that the construction of flue gas denitrition systems is necessary. PM emissions varied from 2.3 kg to 299.9 kg per hour. Total sulfur, moisture, ash and volatile content, and net caloric value of coals were investigated to elucidate the relationship between coals and air pollutant emissions.
基金This work was supported by Science and Technology Project Funded by State Grid Henan Electric Power Company(521702200004)Henan Province Key R&D and Promotion Special(Technology Research)Project(212102210016)Opening Fund of State Key Laboratory of Fire Science(SKLFS)under Grant No.HZ2021-KF11.
文摘In order to study the extinguishing performance of high-pressure-water-mist-based systems on the fires originating from power transformers the PyroSim software is used.Different particle velocities and flow rates are considered.The evolution laws of temperature around transformer,flue gas concentration and upper layer temperature of flue gas are analyzed under different boundary conditions.It is shown that the higher the particle velocity is,the lower the smoke concentration is,the better the cooling effect on the upper layer temperature of flue gas layer is,the larger the flow rate is and the better the cooling effect is.
文摘Galloping of power transmission lines might bring about huge damage such as massive power outage and collapse of the transmission towers. To realize forecast of the galloping and provide data for study on the galloping mechanism, this paper proposes an online monitoring system for tracking galloping profile of power transmission lines based on wireless inertial measurement units (WIMUs). The system is composed of three modules: wireless inertial measurement nodes, monitoring base station, and remote monitoring station. After detailing the hardware system, the corresponding software which positions and displays galloping profile of the transmission line in real-time is outlined. The feasibility of the proposed on-line monitoring system is demonstrated through a series of experiments at the State Grid Key Laboratory of Power Overhead Transmission Line Galloping (Zhengzhou, China) by taking into account different vibration patterns.
基金supported by the National Basic Research Program of China (2012CB315903)the National Science and Technology Support Program (2014BAH24F01)+3 种基金the Program for Key Science and Technology Innovation Team of Zhejiang Province (2011R50010-21, 2013TD20)863 Program of China (2015AA016103)the National Natural Science Foundation of China (61379118)the Fundamental Research Funds for the Central Universities
文摘Providing services on demand is a major contributing factor to drive the increasingly development of the software defined network. However, it should supply all the current popular applications before it really attains widespread development. Multiple Description Coding(MDC) video applications, as a popular application in the current network, should be reasonably supported in this novel network virtualization environment. In this paper, we address this issue to assign MDC video application into virtual networks with an efficient centralized algorithm(CAMDV). Since this problem is an NP-hard problem, we design an algorithm that can effectively balance the user satisfaction and network resource cost. Previous work just builds a global multicast tree for each description to connect all the destination nodes by breadth-first search strategy or shortest path tree algorithm. But those methods could not achieve an optimal balance or a high-level user satisfaction. By introducing the hierarchical clustering scheme, our algorithm decomposes the whole mapping procedure into multicast tree construction and multipath description distribution. A serial of simulation experiments show that our centralized algorithm could achieve a better performance in balancing the user satisfaction and average mapping cost in comparison with its rivals.
文摘We study the Korteweg-de Vries equation and the Benjamin-Bona-Mahony equation, and obtain three kinds of new type soliton solutions, i.e. peakon solutions, double-peak (peaked-point and peaked-compacton) soliton solutions. A double solitary wave with blow-up points is also contained.
文摘The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01Z105)the Ministry of EducationIntel Special Foundation for Information Technology(No.MOE-INTEL-08-05)the Postdoctoral Science Foundation of China(No.20080440942,200902432)
文摘In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.
基金supported by State Grid Corporation of China Co.,Ltd.(Grant No.5500-202024252A-0-0-00).
文摘MnO_(2)-modified Pb_(0.9625)Sm_(0.025)(Mg_(1/3)Nb_(2/3))_(0.71)Ti_(0.2)9O_(3) ceramics were prepared via a solid-state reaction approach.Results of detailed characterizations revealed that the addition of MnO_(2) has influence on the grain size,and all samples exhibit a pure perovskite structure.As the content of manganese increases,the volume of tetragonal phase increases.The ceramics with 1.5 mol.%MnO_(2) show a high electro-strain of 0.151%at 2 kV/mm.Therefore,this study provides a new insight into the role of MnO_(2) addition in tailoring the electrical properties of the Sm-PMN-PT ceramics by acceptor doping.
基金supported by a grant from the National Natural Science Foundation of China (No.51677142)State Grid Science and Technology Project (No.52094016000C)
文摘A fractional frequency transmission system(FFTS)is a promising solution to offshore wind power integration,for which the hexagonal modular multilevel converter(Hexverter)is an attractive choice for power conversion.The Hexverter has recently been proposed to directly connect two three-phase systems of different frequencies and voltage amplitudes,with only six branches in the FFTS in that case.This paper examines for the first time the control scheme of the Hexverter when applied to offshore wind power integration via a FFTS.Firstly,the frequency-decoupled mathematical model of the Hexverter is deduced by introducing the double dq transformation.Then the branch energy of the Hexverter is analyzed in detail and the reactive power constraint equation is obtained.The corresponding control scheme is thoroughly discussed,including the inner loop current control,the outer loop voltage control in both grid-connected mode and passive mode,and a novel optimization method to minimize the circulating current in the Hexverter.Finally,a simulation model of offshore wind power integration via a 4-terminal FFTS based on the Hexverter is built in MATALB/Simulink to verify the feasibility of Hexverter and the effectiveness of the control scheme proposed in this paper.
基金the Science-Technology Program of the State Grid Corporation of China (grant No. 521700140004)and the National Natural Science Foundation of China (grant No. 51777082)and the Fundamental Research Funds for the Central Universities (grant No. 2016YXZD069).
文摘Insulators on high-voltage Uansmission lines are almost the only man-made structures on the Earth's surface intended for long-term operation under strong electric fields. After samples of natural contaminant particles were collected from insulator surfaces in China, it was found that the particle diameter distribution (PDD) was mainly concentrated in the 5-50 μm range. To analyze the statistical characteristics of these particles, this work studies the physical processes of particle collision and adhesion using the theories of hydrodynamics and collision dynamics. The physical model considers coupling of the fluid field and the electric field, introduces an adhesion criterion, and establishes a particle and surface collision model. The effects of relative humidity, wind speed, aerodynamic shape, electric field type, and electric field strength on particle adhesion were analyzed. The results show that the relative humidity and wind speed have very significant effects and the influences of the electric field type and the electric field strength are obvious, but the in fluence of the aerodynamic shape is relatively weak. The simulation results support the statistical characteristics determined in this work. The physical model established here provides reference values for study of the adhesion characteristics of particles on surfaces under electric fields.
基金National Natural Science Foundation of China,Grant/Award Numbers:52107169,51907168。
文摘The dynamic response characteristics,including maximum jump height and unbalanced tension,of isolated-span transmission lines after ice-shedding are investigated by means of experiments.A reduced-scale modelling method for ice-shedding from conductor lines is presented and verified with numerical simulations and full-scale test results in the literature.A parameter study on dynamic responses of isolated-span conductors under three ice-shedding scenarios,including whole span ice-shedding,partial ice-shedding and unzipping ice-shedding,is carried out by means of reduced-scale modelling tests.The effects of these parameters on the maximum jump height at typical positions and unbalanced tension in the tension tower are obtained.It is observed that the partial iceshedding scenario may be the worst situation for electrical insulation clearance rather than the whole span ice-shedding scenario.Moreover,the position of maximum jump height along the span of isolated-span transmission lines after ice-shedding could be at around 2/5 of span length,which is different from the conventional opinion that the position is at the midpoint.The results may provide a foundation for the defining of the insulation clearance for an isolated-span transmission line and the structure design of tension tower arms in an iced zone.
基金This work was supported by Science and Technology Project of State Grid Corporation of China(Research and application of audiovisual active perception and collaborative cognitive technology for smart grid operation and maintenance scenarios)(5600–202046347 A-0–0–00).
文摘In modern energy systems,substations are the core of electricity transmission and distribution.However,similar appearance and small size pose significant challenges for automatic identification of electrical devices.To address these issues,we collect and annotate the substation rotated device dataset(SRDD).Further,feature fusion and feature refinement network(F3RNet)are constructed based on the classic structure pattern of backbone-neck-head.Considering the similar appearance of electrical devices,the deconvolution fusion module(DFM)is designed to enhance the expression of feature information.The balanced feature pyramid(BFP)is embedded to aggregate the global feature.The feature refinement is constructed to adjust the original feature maps by considering the feature alignment between the anchors and devices.It can generate more accurate feature vectors.To address the problem of sample imbalance between electrical devices,the gradient harmonized mechanism(GHM)loss is utilized to adjust the weight of each sample.The ablation experiments are conducted on the SRDD dataset.F3RNet achieves the best detection performance compared with classical object detection networks.Also,it is verified that the features from global feature maps can effectively recognize the similar and small devices.
基金supported by Business Integration and Data Sharing Service Technology Based on Through Information of Operation and Distribution(2016 state Grid Technology Project)
文摘Anomaly detection in smart grid is critical to enhance the reliability of power systems. Excessive manpower has to be involved in analyzing the measurement data collected from intelligent motoring devices while performance of anomaly detection is still not satisfactory. This is mainly because the inherent spatio-temporality and multi-dimensionality of the measurement data cannot be easily captured. In this paper, we propose an anomaly detection model based on encoder-decoder framework with recurrent neural network (RNN). In the model, an input time series is reconstructed and an anomaly can be detected by an unexpected high reconstruction error. Both Manhattan distance and the edit distance are used to evaluate the difference between an input time series and its reconstructed one. Finally, we validate the proposed model by using power demand data from University of California, Riverside (UCR) time series classification archive and IEEE 39 bus system simulation data. Results from the analysis demonstrate that the proposed encoder-decoder framework is able to successfully capture anomalies with a precision higher than 95%.
基金financially supported by the National Natural Science Foundation of China(No.51905309)the Science and Technology Planning Project of State Grid Henan Electric Power Company(No.52170220009Y)。
文摘It is difficult to achieve Al/Cu dissimilar welds with good mechanical properties for medium-thick plates due to the inherent high heat generation rate at the shoulder-workpiece contact interface in conventional friction stir welding.Thus,doubleside friction stir welding is innovatively applied to join 12-mm medium-thick 6061-T6 aluminum alloy and pure copper dissimilar plates,and the effect of welding speeds on the joint microstructure and mechanical properties of Al/Cu welds is systematically analyzed.It reveals that a sound Al/Cu joint without macroscopic defects can be achieved when the welding speed is lower than 180 mm/min,while a nonuniform relatively thick intermetallic compound(IMC)layer is formed at the Al/Cu interface,resulting in lots of local microcracks within the first-pass weld under the plunging force of the tool during friction stir welding of the second-pass,and seriously deteriorates the mechanical properties of the joint.With the increase of welding speed to more than 300 mm/min void defects appear in the joint,but the joint properties are still better than the welds performed at low welding speed conditions since a continuous uniform thin IMCs layer is formed at the Al/Cu interface.The maximum tensile strength and elongation of Al/Cu weld are,respectively,135.11 MPa and 6.06%,which is achieved at the welding speed of 400 mm/min.In addition,due to the influence of welding distortion of the first-pass weld,the secondpass weld is more prone to form void defects than the first-pass weld when the same plunge depth is applied on both sides.The double-side friction stir welding is proved to be a good method for dissimilar welding of medium-thick Al/Cu plates.
基金This work was supported by the National Natural Science Foundation of China (Nos. 20821120293 and 50933003) and Chinese Academy of Sciences.
文摘Effect of the device fabrication conditions on photovoltaic performance of the polymer solar cells based on poly(3-hexylthiophene) (P3HT) as donor and indene-C70 bisadduct (IC70BA) as acceptor was studied systematically. The device fabrication conditions we studied include pre-thermal annealing temperature, active layer thickness, and the P3HT : IC70BA weight ratios. For devices with a 188-nm-thick active layer of P3HT : ICToBA (1 : 1, w ' w) blend film and pre-thermal annealing at 150 ℃C for 10 rain, maximum power conversion efficiency (PCE) reached 5.82% with Voc of 0.81 V, Isc of 11.37 mA/cm2, and FF of 64.0% under the illumination of AM1.5G, 100 mW/cm2.
基金National Natural Science Foundation of China,Grant/Award Number:51425702Ministry of Education of China,Grant/Award Number:B08036National Basic Research Program,Grant/Award Number:2015CB251003。
文摘In this work,the boron nitride(BN)nanosheets were dispersed in natural esters to fabricate the dielectric nanofluid.Microstructures and chemical compositions of the nanosized BN are determined.The stability,viscosity,and thermal conductivity of the BN nanofluid,were obtained.And the dissipation factor,electrical conductivity,and relative permittivity of the BN nanofluid,were measured.The ion mobilities and migrating times of the nanofluid were measured under different volumetric fractions of BN nanosheets and temperatures.Results show that the electrical conductivity and dissipation factor of the nanofluid decreased by 54%and 48%with the addition of only 0.1%of BN nano-sheets under 110°C.Both the half-reduced carrier mobility of the nanofluid and the declined ion concentration by blocking of BN nanosheet contributed to the exponentially reduced electrical conductivity and enhanced dielectric performances of the BN nano-fluid.The suppression coefficient k is proposed to quantitatively describe the hinder effect of ion migration in nanofluids by 2D BN nanosheet.Results provide a strategy to design and develop advanced nanofluids with low-dielectric loss by aids of surface adsorption of ion and steric hindrance of 2D nanosheets.