期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Self-Healing Liquid Metal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding 被引量:3
1
作者 Biao Zhao Zhongyi Bai +8 位作者 Hualiang Lv Zhikai Yan Yiqian Du Xiaoqin Guo Jincang Zhang Limin Wu Jiushuai Deng David Wei Zhang Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期112-125,共14页
Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocom... Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocompatibility,custom shape,and self-healing.Herein,a conductive,stretchable,adaptable,self-healing,and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol(PVA)with sodium tetraborate.The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion.Significantly,owing to the magnetic constituent,the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation.The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions.Additionally,the multifunctional hydrogel displays absorption-dominated electromagnetic interference(EMI)shielding properties.The total shielding performance of the composite hydrogel increases to~62.5 dB from~31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm.The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices. 展开更多
关键词 EMI shielding Liquid metal HYDROGEL Self-healing properties Strain sensor Magnetic patterning
下载PDF
Construction of Ru/WO3 with hetero-interface structure for efficient hydrogen evolution reaction
2
作者 Xin Xie Yunxiao Fan +6 位作者 Wanyu Tian Meng Zhang Jialin Cai Xingang Zhang Jie Ding Yushan Liu Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期150-157,I0006,共9页
Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in ... Water electrolysis is considered as one most promising technique for hydrogen production.The high efficiency electrocatalyst is the key to accelerating the sluggish kinetics of the hydrogen evolution reaction(HER) in alkaline media.In this work,an efficient HER electrocatalyst with hetero-interfacial metal-metal oxide structure was constructed through a redox solid phase reaction(SPR) strategy.During the annealing process under Ar atmosphere,RuO_(2) and WS_(2)in RuO_(2)/WS_(2)precursor were converted to Ru nanoparticles(NPs) and WO3in situ,where tiny Ru NPs and oxygen vacancies were uniformly distributed onto the newly formed WO3nanosheets.Different characterization techniques were adopted to confirm the successful formation of Ru/WO_(3)electrocatalyst(RWOC).The optimized RWOC sample annealed at 400℃ exhibited the low overpotential value of 13 mV at a current density of 10 mA cm^(-2)and strong durability under the alkaline condition.Density functional theoretical calculations further revealed that the promoted adsorption/desorption rate of reaction intermediates and the accelerated kinetics of HER process were deduced to the synergistic effect between Ru and WO_(3)in electrocatalyst.This work provides a feasible method to fabricate highly efficient HER electrocatalysts. 展开更多
关键词 RU WO_(3) Hetero-interface Hydrogen evolution reaction ELECTROCATALYST
下载PDF
Layered Foam/Film Polymer Nanocomposites with Highly Efficient EMI Shielding Properties and Ultralow Reflection 被引量:2
3
作者 Li Ma Mahdi Hamidinejad +2 位作者 Biao Zhao Caiyun Liang Chul B.Park 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期307-324,共18页
Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight la... Lightweight,high-efficiency and low reflection electromagnetic interference(EMI)shielding polymer composites are greatly desired for addressing the challenge of ever-increasing electromagnetic pollution.Lightweight layered foam/film PVDF nanocomposites with efficient EMI shielding effectiveness and ultralow reflection power were fabricated by physical foaming.The unique layered foam/film structure was composed of PVDF/SiCnw/MXene(Ti_(3)C_(2)Tx)composite foam as absorption layer and highly conductive PVDF/MWCNT/GnPs composite film as a reflection layer.The foam layer with numerous heterogeneous interfaces developed between the SiC nanowires(SiCnw)and 2D MXene nanosheets imparted superior EM wave attenuation capability.Furthermore,the microcellular structure effectively tuned the impedance matching and prolonged the wave propagating path by internal scattering and multiple reflections.Meanwhile,the highly conductive PVDF/MWCNT/GnPs composite(~220 S m^(−1))exhibited superior reflectivity(R)of 0.95.The tailored structure in the layered foam/film PVDF nanocomposite exhibited an EMI SE of 32.6 dB and a low reflection bandwidth of 4 GHz(R<0.1)over the Kuband(12.4-18.0 GHz)at a thickness of 1.95 mm.A peak SER of 3.1×10^(-4) dB was obtained which corresponds to only 0.0022% reflection efficiency.In consequence,this study introduces a feasible approach to develop lightweight,high-efficiency EMI shielding materials with ultralow reflection for emerging applications. 展开更多
关键词 2D MXene nanosheets SiC nanowires Layered foam/film polymer nanocomposites Microcellular structure Absorption-dominated EMI shielding
下载PDF
In-situ grown Ni Co bimetal anchored on porous straw-derived biochar composites with boosted microwave absorption properties
4
作者 Yuanyuan Zhou Zhongyi Bai +4 位作者 Xiangyang Yang Wei Liu Bingbing Fan Zhikai Yan Xiaoqin Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第3期515-524,共10页
With the gradually increasing protection awareness about electromagnetic pollution,the demand for absorbing materials with renewability and environmental friendliness has attracted widespread attention.In this work,co... With the gradually increasing protection awareness about electromagnetic pollution,the demand for absorbing materials with renewability and environmental friendliness has attracted widespread attention.In this work,composites consisting of straw-derived biochar combined with NiCo alloy were successfully fabricated through high-temperature carbonization and subsequent hydrothermal reaction.The electromagnetic parameters of the porous biocarbon/NiCo composites can be effectively modified by altering their NiCo content,and their improved absorbing performance can be attributed to the synergy effect of magnetic-dielectric characteristics.An exceptional reflection loss of-27.0 dB at 2.2 mm thickness and an effective absorption bandwidth of 4.4 GHz(11.7-16.1 GHz)were achieved.These results revealed that the porous biocarbon/NiCo composites could be used as a new generation absorbing material because of their low density,light weight,excellent conductivity,and strong absorption. 展开更多
关键词 straw-derived biochar microwave absorption interfacial polarization magnetic loss bimetallic NiCo impedance matching
下载PDF
Superconducting and structural properties of the phosphorus-rich Nb_(2)P_(5) superconductor under high pressure
5
作者 Lei-Ming Chen Fang-Huang Wei +6 位作者 Yan-Hong Chen Hang-Qi Liu Yang Xu Bo-Yu Chen Can-Li Dai Yu-Bo Zhang Zhen-Hai Yu 《Tungsten》 EI CSCD 2023年第3期364-369,共6页
Nb_(2)P_(5) is a recently discovered Bardeen,Cooper,Schrieffer theory s-wave superconductor hosting nontrivial topological nodal-line structure,which could serve as an excellent platform for studying the interplay bet... Nb_(2)P_(5) is a recently discovered Bardeen,Cooper,Schrieffer theory s-wave superconductor hosting nontrivial topological nodal-line structure,which could serve as an excellent platform for studying the interplay between the superconductivity and nontrivial topological states.We report herein the superconducting and structural properties of Nb2P5studied by measuring the electrical resistivity and structure under high pressure up to ~28 GPa and performing first principles calculations.The superconducting transition temperature TCdecreases with applied pressure,and reaches a minimum of 1.9 K at ~20.0 GPa,followed by a continuous enhancement up to 50.0 GPa without saturation.Furthermore,at pressures above ~8.2 GPa,it is likely that a second superconducting transition appears and coexists with the initial one even up to~28 GPa.Theoretical calculations rule out the correlation between the second superconducting-like transition and structure.Moreover,the Nb2P5showed remarkable axial anisotropic compressibility,in which the b-axis is more compressible than the a-and c-axes.The variation of TCis discussed via considering the evolution of density of states around the Fermi level and the phonon spectrum. 展开更多
关键词 Phosphorus-rich superconductor Superconducting transition temperature High-pressure measurement First principles calculations
原文传递
One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides(HE REB6)and high entropy rare earth hexaborides/borates(HE REB6/HE REB03)composite powders 被引量:15
6
作者 Weiming ZHANG Biao ZHAO +3 位作者 Huimin XIANG Fu-Zhi DAI Shijiang WU Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第1期62-77,共16页
Considering the emergence of severe electromagnetic interference problems,it is vital to develop electromagnetic(EM)wave absorbing materials with high dielectric,magnetic loss and optimized impedance matching.However,... Considering the emergence of severe electromagnetic interference problems,it is vital to develop electromagnetic(EM)wave absorbing materials with high dielectric,magnetic loss and optimized impedance matching.However,realizing the synergistic dielectric and magnetic losses in a single phase material is still a challenge.Herein,high entropy(HE)rare earth hexaborides(REB6)powders with coupling of dielectric and magnetic losses were designed and successfully synthesized through a facial one-step boron carbide reduction method,and the effects of high entropy borates intermedia phases on the EM wave absorption properties were investigated.Five HE REB6 ceramics including(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Hu0.2Sm0.2Er0.2Yb0.2)B6,(Ce0.2Y0.2Eu0.2Er0.2Yb0.2)B6,(Ce0.2Ya2Sm0.2Eu0.2Yb0.2)B6,and(Nd0.2Y0.2Sm0.2Eu0.2Yb0.2)B6 possess CsCl-type cubic crystal structure,and their theoretical densities range from 4.84 to 5.25 g/cm^(3).(Ce02Y0.2Sm0.2Er0.2Yb02)B6 powders with the average particle size of 1.86 jim were found to possess the best EM wave absorption properties among these hexaborides.The RLmin value of(Ce0.2Y0.2Sm0.2Er0.2Yb0.2)B6 reaches-33.4 dB at 11.5 GHz at thickness of 2 mm;meanwhile,the optimized effective absorption bandwidth(EAB)is 3.9 GHz from 13.6 to 17.5 GHz with a thickness of 1.5 mm.The introduction of HE REB03(RE=Ce,Y,Sm,Eu,Er,Yb)as intermediate phase will give rise to the mismatching impedance,which will further lead to the reduction of reflection loss.Intriguingly,the HEREB6/HEREB03 still possess wide effective absorption bandwidth of 4.1 GHz with the relative low thickness of 1.7 mm.Considering the better stability,low density,and good EM wave absorption properties,HE REB6 ceramics are promising as a new type of EM wave absorbing materials. 展开更多
关键词 high entropy rare earth hexaborides(HE REB6) one-step synthesis electromagnetic wave absorbing properties synergistic dielectric and magnetic losses wide effective absorption bandwidth
原文传递
Electromagnetic wave absorbing properties of TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C 被引量:13
7
作者 Yanchun Zhou Biao Zhao +4 位作者 Heng Chen Huimin Xiang Fu-Zi Dai Shijiang Wu Wei Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第15期105-118,共14页
Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodie... Electromagnetic wave(EMW)absorbing materials play a vital role in modern communication and information processing technologies to inhibit information leakage and prevent possible damages to environment and human bodies.Currently,most of EMW absorbing materials are either composites of two or more phases or in the form of nanosheets,nanowires or nanofibers in order to enhance the EMW absorption performance through dielectric loss,magnetic loss and dielectric/magnetic loss coupling.However,the combination of complex shapes/multi phases and nanosizes may compound the difficulties of materials processing,composition and interfaces control as well as performance maintenance during service.Thus,searching for single phase materials with good stability and superior EMW absorbing properties is appealing.To achieve this goal,the EMW absorbing properties of transition metal carbides TMCs(TM=Ti,Zr,Hf,Nb and Ta)and high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C which belong to ultrahigh temperature ceramics,were investigated in this work.Due to the good electrical conductivity and splitting of d orbitals into lower energy t2glevel and higher energy eglevel in TMC6octahedral arrangement,TMCs(TM=Ti,Zr,Hf,Nb and Ta)exhibit good EMW absorbing properties.Especially,Hf C and Ta C exhibit superior EMW absorbing properties.The minimum reflection loss(RLmin)value of Hf C is-55.8 d B at 6.0 GHz with the thickness of 3.8 mm and the effective absorption bandwidth(E_(AB))is 6.0 GHz from 12.0 to 18.0 GHz at thickness of 1.9 mm;the RL_(minvalue)of Ta C reaches-41.1 d B at 16.2 GHz with a thickness of 2.0 mm and the EABis 6.1 GHz with a thickness of 2.2 mm.Intriguingly,the electromagnetic parameters,i.e.,complex permittivity and permeability are tunable by forming single phase solid solution or high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C.The R_(Lminvalue)of high entropy(Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2))C is-38.5 d B at 9.5 GHz with the thickness of 1.9 mm,and the EABis 2.3 GHz(from 11.3 to 13.6 GHz)at thickness of 1.5 mm.The significance of this work is that it opens a new window to design single phase high performance EMW absorbing materials by dielectric/magnetic loss coupling through tuning the conductivity and crystal field splitting energy of d orbitals of transition metals in carbides,nitrides and possibly borides. 展开更多
关键词 Transition metal carbides High entropy ceramics Microwave absorption Electromagnetic parameters Electronic structure Crystal field theory
原文传递
Achieving strong microwave absorption capability and wide absorption bandwidth through a combination of high entropy rare earth silicide carbides/rare earth oxides 被引量:12
8
作者 Heng Chen Biao Zhao +4 位作者 Zifan Zhao Huimin Xiang Fu-Zhi Dai Jiachen Liu Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第12期216-222,共7页
Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applica... Developing electromagnetic(EM) wave absorbing materials with low reflection coefficient and optimal operating frequency band is urgently needed on account of the increasingly serious EM pollution. However, the applications of common EM absorbing materials are encumbered by poor high-temperature stability, poor oxidation resistance, narrow absorption bandwidth or high density. Herein, the strong EM absorption capability and wide efficient absorption bandwidth of high entropy ceramics are reported for the first time, which are designed by a combination of the novel high entropy(HE) rare earth silicide carbides/rare earth oxides(RE3 Si2 C2/RE2 O3). Three HE powders, i.e., HERSC-1(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2),HERSC-2 HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3) and HERSC-3(HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)3 Si2 C2/HE(Tm0.2 Y0.2 Dy0.2 Gd0.2 Tb0.2)2 O3), are synthesized. Although HERSC-1 exhibits a limited absorption effect(the minimum reflection loss(RLmin) is-11.6 d B at 3.4 mm) and a relatively narrow effective absorption bandwidth(EAB) of 1.7 GHz, the optimal absorption RLminvalue and EAB of HERSC-2 and HERSC-3 are-40.7 d B(at 2.9 mm), 3.4 GHz and-50.9 d B(at 2.0 mm), 4.5 GHz,respectively, demonstrating strong microwave absorption capability and wide absorption bandwidth.Considering the better stability, low density and strong EM absorption effect, HE ceramics are promising as a new type of EM absorbing materials. 展开更多
关键词 High entropy ceramics Rare earth silicide carbides Absorption materials Reflection loss Interfacial polarization
原文传递
Processing and properties of PcBN composites fabricated by HPHT using PSN and Al as sintering additive 被引量:4
9
作者 Ming-Liang Li Li-Xing Liang +4 位作者 Hai-Long Wang Peng-Bo Zhao Xiao-Tong Zhao Gang Shao Rui Zhang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期570-576,共7页
Dense polycrystalline cubic boron nitride(PcBN)composites were fabricated by high-pressure and high-temperature(HPHT)sintering using polysilazane(PSN)and Al as sintering additive.After high-energy ball milling,the cBN... Dense polycrystalline cubic boron nitride(PcBN)composites were fabricated by high-pressure and high-temperature(HPHT)sintering using polysilazane(PSN)and Al as sintering additive.After high-energy ball milling,the cBN fine particles were uniformly coated with PSN by ultrasonic treatment.After thermocuring and pyrolysis,the cBN–SiCN particles were mixed with Al The PcBN composites were prepared after sintering a1450°C for 10 min with a pressure of 5 GPa.The refining effect of high-energy ball milling on the c BN particles was studied by scanning electron microscopy(SEM)and laser particle size analyzer.The oxidation of the cBN particles after milling was investigated by nitrogen–oxygen analyzer.The phase composition and microstructure of the sintered PcBN composites were investigated by X-ray diffractometer(XRD)and SEM.The main phases of the sintered PcBN composites are c BN,AlN,SiC and Si3N4The conversion of cBN to hBN was inhibited by the formation of AlN.The mechanical properties of the sintered PcBN composites were improved by the appearance of SiC and Si3N4.The density and mechanical properties of the PcBN composites both increased with the content of the cBN particles increasing.The sintered sample with 60 wt%cBN,30 wt%PSN and 10 wt%Al showed the best results density of 99.7%,Vickers’hardness of(25.2±0.8)GPa and flexural strength of(602±15)MPa. 展开更多
关键词 Polycrystalline cubic boron nitride Highpressure and high-temperature sintering High-energy ball milling Mechanical properties
原文传递
Structure-dependent electromagnetic wave absorbing properties of bowl-like and honeycomb TiO_(2)/CNT composites 被引量:2
10
作者 Hua Jian Qinrui Du +7 位作者 Qiaoqiao Men Li Guan Ruosong Li Bingbing Fan Xin Zhang Xiaoqin Guo Biao Zhao Rui Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第14期105-113,共9页
Materials that can efficiently absorb electromagnetic waves(EMWs)are required to deal with electromagnetic pollution.Structure design appears to be an efficient way to improve the EMW-absorption performance of such ma... Materials that can efficiently absorb electromagnetic waves(EMWs)are required to deal with electromagnetic pollution.Structure design appears to be an efficient way to improve the EMW-absorption performance of such materials,particularly when adjustment of the constitution or mixing ratio is limited.In this study,bowl-like and honeycomb titanium dioxide/carbon nanotube(TiO_(2)/CNT)composites with different CNT contents were fabricated using the methods of hierarchical and mixing vacuum-assisted filtration,respectively.Compared to the honeycomb structure,the bowl-like structure simultaneously facilitated greater interfacial polarization and conduction loss in favor of dielectric polarization,and augmented multiple reflections.The high porosity of the honeycomb structure was conducive to optimizing the impedance matching characteristics.The bowl-like TiO_(2)/CNT composite exhibited a minimum reflection loss(RL_(min))of-38.6 dB(1.5 mm)with a wide effective absorption band(EAB;<-10 dB)of4.2 GHz,while the honeycomb TiO_(2)/CNT composite showed an RLminof-34.8 dB(2.1 mm)with an EAB of 4.3 GHz.The required mixing ratio in the matrix was only 15 wt%,outperforming that of the most closely related composites.Thus,both the bowl-like and honeycomb TiO_(2)/CNT composites are ideal candidates for light-weight and highly efficient EMW-absorbing materials. 展开更多
关键词 Bowl-like structure Honeycomb structure TiO_(2)/CNT composite Electromagnetic wave absorption
原文传递
High-entropy ceramics:Present status,challenges,and a look forward 被引量:30
11
作者 Huimin XIANG Yan XING +11 位作者 Fu-zhi DAI Hongjie WANG Lei SU Lei MIAO Guojun ZHANG Yiguang WANG Xiwei QI Lei YAO Hailong WANG Biao ZHAO Jianqiang LI Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第3期385-441,共57页
High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging ... High-entropy ceramics (HECs) are solid solutions of inorganic compounds with one or more Wyckoff sites shared by equal or near-equal atomic ratios of multi-principal elements.Although in the infant stage,the emerging of this new family of materials has brought new opportunities for material design and property tailoring.Distinct from metals,the diversity in crystal structure and electronic structure of ceramics provides huge space for properties tuning through band structure engineering and phonon engineering.Aside from strengthening,hardening,and low thermal conductivity that have already been found in high-entropy alloys,new properties like colossal dielectric constant,super ionic conductivity,severe anisotropic thermal expansion coefficient,strong electromagnetic wave absorption,etc.,have been discovered in HECs.As a response to the rapid development in this nascent field,this article gives a comprehensive review on the structure features,theoretical methods for stability and property prediction,processing routes,novel properties,and prospective applications of HECs.The challenges on processing,characterization,and property predictions are also emphasized.Finally,future directions for new material exploration,novel processing,fundamental understanding,in-depth characterization,and database assessments are given. 展开更多
关键词 high-entropy ceramics(HECs) PROCESSING structure properties applications
原文传递
Achieving ultra-broadband electromagnetic wave absorption in high-entropy transition metal carbides (HE TMCs) 被引量:5
12
作者 Weiming ZHANG Huimin XIANG +3 位作者 Fu-Zhi DAI Biao ZHAO Shijiang WU Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第4期545-555,共11页
Electronic devices pervade everyday life,which has triggered severe electromagnetic(EM)wave pollution.To face this challenge,developing EM wave absorbers with ultra-broadband absorption capacity is critically required... Electronic devices pervade everyday life,which has triggered severe electromagnetic(EM)wave pollution.To face this challenge,developing EM wave absorbers with ultra-broadband absorption capacity is critically required.Currently,nano-composite construction has been widely utilized to realize impedance match and broadband absorption.However,complex experimental procedures,limited thermal stability,and interior oxidation resistance are still unneglectable issues.Therefore,it is appealing to realize ultra-broadband EM wave absorption in single-phase materials with good stability.Aiming at this target,two high-entropy transition metal carbides(HE TMCs)including(Zr,Hf,Nb,Ta)C(HE TMC-2)and(Cr,Zr,Hf,Nb,Ta)C(HE TMC-3)are designed and synthesized,of which the microwave absorption performance is investigated in comparison with previously reported(Ti,Zr,Hf,Nb,Ta)C(HE TMC-1).Due to the synergistic effects of dielectric and magnetic losses,HE TMC-2 and HE TMC-3 exhibit better impedance match and wider effective absorption bandwidth(EAB).In specific,the exclusion of Ti element in HE TMC-2 endows it optimal minimum reflection loss(RL_(min))and EAB of−41.7 dB(2.11 mm,10.52 GHz)and 3.5 GHz(at 3.0 mm),respectively.Remarkably,the incorporation of Cr element in HE TMC-3 significantly improves the impedance match,thus realizing EAB of 10.5,9.2,and 13.9 GHz at 2,3,and 4 mm,respectively.The significance of this study lays on realizing ultra-broadband capacity in HE TMC-3(Cr,Zr,Hf,Nb,Ta),demonstrating the effectiveness of high-entropy component design in tailoring the impedance match. 展开更多
关键词 transition metal carbide(TMC) high-entropy ceramics electromagnetic(EM)wave absorption dielectric and magnetic loss coupling ultra-broadband absorption
原文传递
(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B:A novel high-entropy monoboride with good electromagnetic interference shielding performance in K-band 被引量:5
13
作者 Haiming Zhang Biao Zhao +3 位作者 Fu-Zhi Dai Huimin Xiang Zhili Zhang Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第18期58-65,共8页
A novel equimolar high-entropy(HE)transition metal monoboride,(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B,was designed and prepared in powder and bulk form by high temperature elemental reaction method and spark plasm... A novel equimolar high-entropy(HE)transition metal monoboride,(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B,was designed and prepared in powder and bulk form by high temperature elemental reaction method and spark plasma sintering(SPS)method,respectively.XRD analysis shows that HE(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B possesses orthorhombic structure with Pnma space group.Through Rietveld refinement,the lattice parameters of HE(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B are a=5.6675,b=2.9714,c=4.2209 and the theoretical density is 6.95 g/cm~3.The Vickers hardness and electrical conductivity of HE(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B bulk with relative density of 90%is 12.3±0.5 GPa and 0.49±0.04×10~6 S/m,respectively.Due to high electrical conductivity,HE(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B bulk with 3.0 mm thickness displays superior EMI shielding performance in 18.0–26.5 GHz(K-band),and the average values of SET,SER,and SEAare 23.3 dB,13.9 dB,and 9.4 dB,respectively.The EMI shielding mechanism of HE(Cr_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Mo_(0.2))B mainly results from reflection. 展开更多
关键词 High-entropy ceramics Transition metal monoboride Electromagnetic interference(EMI)shielding Mechanical properties Electrical conductive ceramics
原文传递
High-entropy spinel ferrites MFe_(2)O_(4)(M=Mg,Mn,Fe,Co,Ni,Cu,Zn)with tunable electromagnetic properties and strong microwave absorption 被引量:4
14
作者 Jiabin MA Biao ZHAO +4 位作者 Huimin XIANG Fu-Zhi DAI Yi LIU Rui ZHANG Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第5期754-768,共15页
Ferrites are the most widely used microwave absorbing materials to deal with the threat of electromagnetic(EM)pollution.However,the lack of sufficient dielectric loss capacity is the main challenge that limits their a... Ferrites are the most widely used microwave absorbing materials to deal with the threat of electromagnetic(EM)pollution.However,the lack of sufficient dielectric loss capacity is the main challenge that limits their applications.To cope with this challenge,three high-entropy(HE)spineltype ferrite ceramics including(Mg_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2))Fe_(2)O_(4),(Mg_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Cu_(0.2))Fe_(2)O_(4),and(Mg_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2)Zn_(0.2))Fe_(2)O_(4)were designed and successfully prepared through solid state synthesis.The results show that all three HE MFe_(2)O_(4) samples exhibit synergetic dielectric loss and magnetic loss.The good magnetic loss ability is due to the presence of magnetic components;while the enhanced dielectric properties are attributed to nano-domain,hopping mechanism of resonance effect and HE effect.Among three HE spinels,(Mg_(0.2)Mn_(0.2)Fe_(0.2)Co_(0.2)Ni_(0.2))Fe_(2)O_(4)shows the best EM wave absorption performance,e.g.,its minimum reflection loss(RL_(min))reaches-35.10 dB at 6.78 GHz with a thickness of 3.5 mm,and the optimized effective absorption bandwidth(EAB)is 7.48 GHz from 8.48 to 15.96 GHz at the thickness of 2.4 mm.Due to the easy preparation and strong EM dissipation ability,HE MFe_(2)O_(4) are promising as a new type of EM absorption materials. 展开更多
关键词 high-entropy ceramics(HECs) spinel-type ferrite electromagnetic(EM)wave absorption dielectric loss magnetic loss
原文传递
Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption 被引量:4
15
作者 Biao Zhao Yang Li +4 位作者 Qingwen Zeng Bingbing Fan Lei Wang Rui Zhang Renchao Che 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第12期100-110,共11页
Microwave absorption(MA) materials have been captured extensive attentions due to the serious electromagnetic(EM) pollution. Numerous interests focus on the MA performances of core-shell structural composites with mag... Microwave absorption(MA) materials have been captured extensive attentions due to the serious electromagnetic(EM) pollution. Numerous interests focus on the MA performances of core-shell structural composites with magnetic constituents as cores and dielectric constituents as shells, which inevitably suppressed the magnetic coupling causing the decrease of magnetic loss to some extent. Herein, the coreshell structural carbon(C) microsphere/magnetic metal composites were fabricated through the combination of an electrostatic assembly approach and subsequent in-situ reduction reaction. The complex permittivity and permeability of core-shell C@magnetic metal composite system can be effective adjusted by the constituent and microstructure of shells. Thanks to the distinct magnetic coupling from the subtle designed structures and the promotion of the magnetic-dielectric synergy, the C@magnetic metal composite exhibited enhanced MA properties. The optimal reflection loss(RL) of C@Ni composite was-54.1 dB with a thickness of 3.4 mm, meanwhile the effective absorbing band could reach over 5.5 GHz at only a1.8 mm thickness. Broad absorption bandwidth with RL below-10 d B could achieve 6.0 GHz and 6.7 GHz for C@Co and C@Ni Co composites with a thin 2.1 mm thickness, respectively. Our exciting findings might lead a guide on the novel structure design for the functional core-shell structural composites used for microwave absorption. 展开更多
关键词 Microwave absorption Core-shell structure C@magnetic metal composite Interfacial polarization Magnetic coupling
原文传递
Enabling highly efficient and broadband electromagnetic wave absorption by tuning impedance match in high-entropy transition metal diborides (HETMB_(2)) 被引量:4
16
作者 Weiming ZHANG Fu-Zhi DAI +6 位作者 Huimin XIANG Biao ZHAO Xiaohui WANG Na NI Rajamallu KARRE Shijiang WU Yanchun ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第6期1299-1316,共18页
The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielect... The advance in communication technology has triggered worldwide concern on electromagnetic wave pollution.To cope with this challenge,exploring high-performance electromagnetic(EM)wave absorbing materials with dielectric and magnetic losses coupling is urgently required.Of the EM wave absorbers,transition metal diborides(TMB2)possess excellent dielectric loss capability.However,akin to other single dielectric materials,poor impedance match leads to inferior performance.High-entropy engineering is expected to be effective in tailoring the balance between dielectric and magnetic losses through compositional design.Herein,three HE TMB2 powders with nominal equimolar TM including HE TMB2-I(TM=Zr,Hf,Nb,Ta),HE TMB2-2(TM=Ti,Zr,Hf,Nb,Ta),and HE TMB2-3(TM=Cr,Zr,Hf,Nb,Ta)have been designed and prepared by one-step boro/carbothermal reduction.As a result of synergistic effects of strong attenuation capability and impedance match,HE TMB2-1 shows much improved performance with the optimal minimum reflection loss(RL_(min))of-59.6 dB(8.48 GHz,2.68 mm)and effective absorption bandwidth(EAB)of 7.6 GHz(2.3 mm).Most impressively,incorporating Cr in HE TMB2-3 greatly improves the impedance match over 1-18 GHz,thus achieving the RLmin of-56.2 dB(8.48 GHz,2.63 mm)and the EAB of 11.0 GHz(2.2 mm),which is superior to most other EM wave absorbing materials.This work reveals that constructing high-entropy compounds,especially by incorporating magnetic elements,is effectual in tailoring the impedance match for highly conductive compounds,i.e.,tuning electrical conductivity and boosting magnetic loss to realize highly efficient and broadband EM wave absorption with dielectric and magnetic coupling in single-phase materials. 展开更多
关键词 transition metal diboride(TMB2) high-entropy(HE)ceramics electronic structure microwave absorption dielectric and magnetic losses coupling
原文传递
Dependence of electromagnetic wave absorption properties on the topography of Ni anchoring on reduced graphene oxide
17
作者 Luyang Liang Zhaoyang Li +4 位作者 Zhongyi Bai Yuezhan Feng Xiaoqin Guo Jianmin Ma Chuntai Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期870-874,共5页
Specific topographic Ni anchoring on reduced graphene oxide(rGO) composites show an astronomical potential as effective wave absorbers due to the synergistic electromagnetic loss effects.Herein,Ni/rGO composites with ... Specific topographic Ni anchoring on reduced graphene oxide(rGO) composites show an astronomical potential as effective wave absorbers due to the synergistic electromagnetic loss effects.Herein,Ni/rGO composites with different topography were successfully prepared via hydrothermal in-situ reduction method.The structure and morphology characteristics revealed that particle-like,chain-like,coin-like and flower-like Ni were closely anchored onto rGO,respectively.The electromagnetic wave absorption(EMA) performance revealed that chain-like Ni/rGO exhibited the optimal reflection loss of-43.7 dB with a thickness of 1.8 mm as well as the EAB of 6.1 GHz at 2.0 mm among all samples due to the good impedance match and the synergistic dielectric and magnetic losses.Besides,one conclusion can be drawn that excellent magnetic coupling effect and impedance matching were the main reasons for significantly improving the EMA performance.Considering the systematic dependence of morphology on EMA,this work provides a perspective for designing high-performance absorbing materials. 展开更多
关键词 Ni/rGO Morphology structure Magnetic coupling effect Synergistic effect Electromagnetic wave absorption
原文传递
Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth 被引量:1
18
作者 Wanyu ZHAO Jian LI +5 位作者 Bingbing FAN Gang SHAO Hailong WANG Bozhen SONG Shengnan WEI Rui ZHANG 《Frontiers of Materials Science》 SCIE CSCD 2017年第4期353-357,共5页
原文传递
核壳结构LaOCl/LaFeO_(3)纳米纤维的阻抗匹配设计及其电磁吸波性能研究 被引量:2
19
作者 邢岩 范艺存 +3 位作者 严智凯 赵彪 黄语嘉 潘伟 《Science China Materials》 SCIE EI CAS CSCD 2023年第4期1587-1596,共10页
电磁波在无线通信等领域的广泛应用导致了严重的电磁污染,迫切需要研发高性能电磁波吸收材料.本文针对吸波材料阻抗不匹配等关键问题,设计并成功制备了新型核壳LaOCl/LaFeO_(3)纳米纤维电磁波吸收剂.这种独特的一维多级结构由导电LaFeO_... 电磁波在无线通信等领域的广泛应用导致了严重的电磁污染,迫切需要研发高性能电磁波吸收材料.本文针对吸波材料阻抗不匹配等关键问题,设计并成功制备了新型核壳LaOCl/LaFeO_(3)纳米纤维电磁波吸收剂.这种独特的一维多级结构由导电LaFeO_(3)磁性壳层和离子化合物LaOCl核层组成.基于介电-磁损耗耦合和阻抗匹配的协同作用,LaOCl/LaFeO_(3)纳米纤维在超低负载条件下(4 w t%),表现出-40.1 d B(2.0 mm)的反射损耗和6.4 GHz(2.4 mm)的有效吸收带宽.该工作提出了一种新型LaOCl/LaFeO_(3)纳米纤维吸波材料,并为阻抗匹配调控和电磁吸波性能优化开辟了新策略. 展开更多
关键词 阻抗不匹配 无线通信 反射损耗 阻抗匹配 离子化合物 吸波材料 电磁污染 负载条件
原文传递
High entropy rare earth hexaborides/tetraborides(HE REB_(6)/HE REB_(4)) composite powders with enhanced electromagnetic wave absorption performance 被引量:9
20
作者 Weiming Zhang Biao Zhao +4 位作者 Na Ni Huimin Xiang Fu-Zhi Dai Shijiang Wu Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第28期155-166,共12页
The increasing electromagnetic hazards including electromagnetic interference and electromagnetic pollution,which were stemmed from massive usage of electromagnetic technology,have triggered widespread concerns.To cop... The increasing electromagnetic hazards including electromagnetic interference and electromagnetic pollution,which were stemmed from massive usage of electromagnetic technology,have triggered widespread concerns.To cope with this challenge,electromagnetic wave absorbing materials with high performance are greatly needed.Composite construction has been widely applied in electromagnetic(EM)wave absorbing materials to achieve high permittivity,high permeability and impedance matching.However,high-temperature stability,oxidation and corrosion resistance are still unignorable issues.Herein,high entropy hexaborides/tetraborides(HE REB_(6)/HE REB_(4))composites with synergistic dielectric and magnetic losses were designed and successfully synthesized through a one-step boron carbide reduction method.The five as-prepared(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4),(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) and(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2) Yb_(0.2))B_(4) contain two phases of HE REB_(6) and HE REB_(4).Among them(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Eu_(0.2) Er_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-1)and(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(6)/(Y_(0.2) Nd_(0.2) Sm_(0.2) Er_(0.2) Yb_(0.2))B_(4)(HE REB_(6)/HE REB_(4)-2)exhibit excellent EM wave absorption properties.The optimal minimum reflection loss(RL_(m in))and effective absorption bandwidth(E_(AB))of HE REB_(6)/HE REB_(4)-1 and HE REB_(6)/HE REB_(4)-2 are–53.3 dB(at 1.7 mm),4.2 GHz(at 1.5 mm)and–43.5 dB(1.3 mm),4.2 GHz(1.5 mm),respectively.The combination of conducting HE REB_(4) with magnetism into HE REB_(6) as a second phase enhances dielectric and magnetic losses,which lead to enhanced EM wave absorption performance.Considering superior high-temperature stability,oxidation and corrosion resistance of HE REB_(6) and HE REB_(4),HE REB_(6)/HE REB_(4) composite ceramics are promising as a new type of high-performance EM wave absorbing materials. 展开更多
关键词 High entropy ceramics Hexaborides/tetraborides composites One-step synthesis Electromagnetic wave absorption Synergistic dielectric and magnetic losses
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部