CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met...CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE...Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.展开更多
Activation of oxygen over non-precious materials has been an imperative task to develop efficient electrochemical energy storage and conversion such as fuel cells and metal-air batteries.Herein,a molten salt electroch...Activation of oxygen over non-precious materials has been an imperative task to develop efficient electrochemical energy storage and conversion such as fuel cells and metal-air batteries.Herein,a molten salt electrochemical modulation of metal-nitrogen-carbon based compounds(M–N–C)is achieved.By electrochemical treatment of polydopamine-coated NiCo_(2)O_(4)(NiCo_(2)O_(4)@PDA)in molten Li_(2)CO_(3)-Na_(2)CO_(3)-K_(2)CO_(3)at 500℃,Ni/Co bimetal-nitrogen-carbon catalyst(denoted as Ni/Co@NC)consisting of Ni-Co nanoparticles anchoring on porous nitrogen-doped carbon is constructed and evaluated as electrocatalysts towards the oxygen reduction reaction(ORR).Experimental and calculation results confirm that alloying of Ni-Co and nitrogen doping to carbon enhances the rate-determining transformation of*OH intermediate during ORR.The Ni/Co@NC hence shows an ORR activity comparable with the commercial Pt/C.展开更多
The state-of-the-art industry based on carb on-inte nsive energy causes major concerns on energy and environmental sustainability.Carb on n eutrality is now a worldwide con sensus and an imperative task.Efficient capt...The state-of-the-art industry based on carb on-inte nsive energy causes major concerns on energy and environmental sustainability.Carb on n eutrality is now a worldwide con sensus and an imperative task.Efficient capture and/or conversion of carbon dioxide(CO_(2))is key-enabling to achieve carbon neutrality.Challenges of the aforenamed task lie in the chemical inertness of CO_(2) and costly separation of CO_(2) from flue gases.Capture and conversion of CO_(2) on the occasions of gen eration,namely in-situ CO_(2) conversi on,are highly desired.展开更多
Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hin...Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.展开更多
The increasing demands of hydrogen and the recent discovery of large reserves of methane have prompted the conversion of methane to hydrogen.The challenges raised by intensive CO_(2) emission from the traditional conv...The increasing demands of hydrogen and the recent discovery of large reserves of methane have prompted the conversion of methane to hydrogen.The challenges raised by intensive CO_(2) emission from the traditional conversion of methane have provoked emission-free hydrogen production from methane.The catalytic decomposition of methane(CDM) to produce hydrogen and advanced carbon hence comes into consideration due to the short process and environmental benignity.Although many researchers have made considerable progress in CDM research on the laboratory scale,CDM is still in its infancy in industrialization.The history of its development,fundamental mechanisms,and recent research progress in catalysts and catalytic systems are herein highlighted.The problems of catalytic interface degradation are reviewed,focusing on deactivation from coke deposition in the CDM process.The introduction of a liquid phase interface which can in-situ remove carbon products provides a new strategy for this process.Furthermore,the challenges and prospects for future research into novel CDM catalysts or catalyst systems are included.展开更多
The development of the hydrogen electrode is vital for the application of alkaline polymer electrolyte fuel cells(APEFCs).In this study,a series of Ni(OH)_2 decorated Ni/C catalysts(Ni(OH)_2-Ni/C) were prepared by a t...The development of the hydrogen electrode is vital for the application of alkaline polymer electrolyte fuel cells(APEFCs).In this study,a series of Ni(OH)_2 decorated Ni/C catalysts(Ni(OH)_2-Ni/C) were prepared by a three-step electrochemical treatment of Ni/C.The existence of Ni(OH)_2 was demonstrated by X-ray photoelectron spectroscopy(XPS),and the surface molar ratio of Ni(OH)_2/Ni of the samples was estimated via an electrochemical method.The HOR catalytic activity of the catalysts was evaluated by a rotation disk electrode(RDE) method,and a "volcano plot" was established between the HOR exchange current(j0) and the surface molar ratio of Ni(OH)_2/Ni.On top of the "volcano",the surface molar ratio of Ni(OH)_2/Ni is1.1:1,the j0 of which was 6.8 times of that of Ni/C.The stability of the samples toward HOR was evaluated to be good.Our study added a systematic experimental evidence to the HOR research,showing that the HOR catalytic activity of Ni can be deliberately controlled via decoration of Ni(OH)_2,which may help understanding the HOR mechanism on Ni.展开更多
Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.H...Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.Here,we report the fabrication of PtCu3 nanodendrites possessing rich spiny branches exposing n(111)×(110)HISs.The dendrites were formed through an etching‐modulated seeding and growing strategy.Specifically,an oxidative atmosphere was initially applied to form the concaved nanocubes of the Pt‐Cu seeds,which was then switched to an inert atmosphere to promote an explosive growth of dendrites.Separately,the oxidative or inert atmosphere failed to produce this hyperbranched structure.Electrochemical dealloying of the PtCu3 nanodendrites produced Pt3Cu shells with Pt‐rich surfaces where HIS‐exposed dendrite structures were maintained.The resulting PtCu_(3)@Pt_(3)Cu@Pt nanodendrites in 0.1 M HClO4 exhibited excellent mass and area specific activities for ORR,which were 14 and 24 times higher than that of commercial Pt/C,respectively.DFT calculations revealed that Cu alloying and HISs both contributed to the significantly enhanced activity of Pt,and that the oxygen binding energy on the step sites of HISs on the PtCu_(3)@Pt_(3)Cu@Pt nanodendrites approached the optimal value to achieve a near peak‐top ORR activity.展开更多
Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3 electrodes consisting of nanostrip-like ...Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3 electrodes consisting of nanostrip-like V2O3 perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3 accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H*for generating H2.展开更多
Direct conversion of biomass to functional materials is an ideal solution to relieve challenges in environmental and energy sustainability.We herein demonstrate a molten salt thermoelectrolysis of rice husks(RHs)mainl...Direct conversion of biomass to functional materials is an ideal solution to relieve challenges in environmental and energy sustainability.We herein demonstrate a molten salt thermoelectrolysis of rice husks(RHs)mainly consisting of organic mass and biosilica to achieve high-efficiency and upgraded utilization of both Si and C in RHs.By coupling pyrolysis of organic mass with electrochemical reduction of silica in molten salts,the thermoelectrolysis of RHs in molten CaCl_(2)-NaCl at 800℃ refines the RHs and acidleached RHs to SiC nanowire/C(SiC-NW/C)and Si nanoparticle/C(Si-NP/C),respectively.The present study highlights the molten salt thermoelectrolysis for reclamation of biomass wastes in an affordable and controllable manner.展开更多
Lithium metal is the ultimate anode choice for high energy rechargeable lithium batteries owing to its ultra-high theoretical capacity,however,Li dendrites and low Coulombic efficiency(CE)caused by disordered Li plati...Lithium metal is the ultimate anode choice for high energy rechargeable lithium batteries owing to its ultra-high theoretical capacity,however,Li dendrites and low Coulombic efficiency(CE)caused by disordered Li plating restrict its practical application.Herein,we develop an ultrathin Sn-decorated Cu substrate(Sn@Cu)fabricated by an electroless plating method to induce ordered Li nucleation and growth behavior.The lithiophilic Sn interfacial layer is found to play a critical role to lower the Li nucleation over-potential and promote fast Li-migration kinetics,and the underlying mechanism is revealed using the first principle calculations.Accordingly,a dense dendrite-free and Li deposition with large granular morphology is obtained,which significantly improved the CE and cycling performance of Li‖Sn@Cu half cells symmetric cells.Symmetric cells using the Li-Sn@Cu electrode display a much-prolonged life span(>1200 h)with low overpotential(~18 mV)at a high current density of 1 mA cm^(-2).Moreover,full cells paired with commercial LiFePO_(4) cathode(1.8 mAh cm^(-2))deliver enhanced cycling stability(0.5 C,300 cycles)and excellent rate performance.This work provides a simple and effective way to bring about high efficiency and long lifespan substrates for practical applications.展开更多
Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon t...Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon template into a melamine/Fe-salt mixture to inductively generate highly active Fe-N_x sites for ORR. Using 57 Fe M?sbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we studied the structural composition of the Fe and N co-doped carbon catalysts.Interestingly, the results showed that this system not only converted inactive Fe and Fe-carbides into active Fe-N_4 and other Fe-nitrides, but also improved their intrinsic activities.展开更多
The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains ...The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.展开更多
Electrocatalysis plays a vital role in technologies of energy and environment relevance,such as water electrolysis,fuel cells,synthesis of carbon and nitrogen-based fuels,etc.The volcano relations(VRs)are general and ...Electrocatalysis plays a vital role in technologies of energy and environment relevance,such as water electrolysis,fuel cells,synthesis of carbon and nitrogen-based fuels,etc.The volcano relations(VRs)are general and standard tools for predicting and understanding the activity trends of electrocatalysts.The modern electrocatalytic VRs are generally based on the kinetic models with the maximum free energy(△G^(0)_(max))of reaction steps as the rate-determining term(RDT),in which some important factors that crucially impact the reaction kinetics are missed,for examples,the surface structures and coverages of reaction intermediates and spectators,other free energy demanding steps than that associated with the △G^(0)_(max),and so on.In this perspective,we first give a brief introduction of the theoretical framework of current electrocatalytic VRs and the underlying problems in the oversimplifiedDG0max-based kinetic models,and then provide an account of our effort in constructing more rational VRs for electrocatalytic reactions.We introduce a new theoretical framework of electrocatalytic VRs based on kinetic model with the so-called energetic span(δE)serving as RDT.Since the surface-coverage effects and multiple free energy-demanding steps are considered,the VRs thus obtained show several new features such as strong potential dependence,asymmetric ascending and descending branches,relatively flat tops,and so on.The effectiveness of theδE-based VRs is verified for hydrogen and oxygen electrocatalytic reactions.Finally,research directions to further rationalize the electrocatalytic VRs are discussed.展开更多
Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts produc...Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts product distribution.However,the precise control of proton transfer during CO_(2) reduction remains challenging.In this study,we present a well-controlled proton transfer through the modification of several purines with similar molecular structures,and reveal a direct correlation between surface proton transfer capability and CO_(2) reduction selectivity over Cu electrode.With a moderate proton transfer capability,the guanine modification can remarkably boost CH_(4) production and suppress C2 products formation.In-situ ATR-SEIRAS suggests a weakened^(*)CO intermediate adsorption and a relatively low local pH environment after the guanine modification,which facilitates the^(*)CO protonation and detachment for CH_(4) generation.展开更多
Lithium deposition on graphite electrode not only reduces fast-charging capability of lithium ion batteries but also causes safety trouble.Here,a low-field^(7)Li dynamic nuclear polarization(DNP)is used to probe Li pl...Lithium deposition on graphite electrode not only reduces fast-charging capability of lithium ion batteries but also causes safety trouble.Here,a low-field^(7)Li dynamic nuclear polarization(DNP)is used to probe Li plating on the surfaces of three types of carbon electrodes:hard carbon,soft carbon and graphite.Owing to the strong Fermi contact interaction between^(7)Li and conduction electrons,the^(7)Li nuclear-magnetic-resonance(NMR)signal of Li metal deposited on electrode surface could be selectively enhanced by DNP.It is suggested that low-field^(7)Li DNP spectroscopy is a sensitive tool for investigating Li deposition on electrodes during charging/discharging processes.展开更多
Antimony(Sb)is an intriguing anode material for Li-ion batteries(LIBs)owing to its high theoretical capacity of 660 m Ah·g^(-1)and appropriate working potential of~0.8 V(vs.Li^(+)/Li).However,just like all alloyi...Antimony(Sb)is an intriguing anode material for Li-ion batteries(LIBs)owing to its high theoretical capacity of 660 m Ah·g^(-1)and appropriate working potential of~0.8 V(vs.Li^(+)/Li).However,just like all alloying materials,the Sb anode suffers from huge volume expansion(230%)during repeated insertion/extraction of Li+ions,resulting in structural deterioration and rapid capacity decay.In this work,a novel amorphous Sb/C composite with atomically dispersed Sb particles in carbon matrix is prepared via a straightforward high-energy ball milling approach.The intimate intermixing of amorphous Sb with C provides homogeneous element distribution and isotropic volume expansion during cycling,resulting in persistent structural stability.Meanwhile,the disordered structure of amorphous material shortens the diffusion distance of lithium ions/electrons,promoting fast reaction kinetics and rate capability.Benefiting from the aforementioned effects,the amorphous Sb/C exhibits a high reversible capacity of537.4 m Ah·g^(-1)at 0.1 A·g^(-1)and retains 201.0 m Ah·g^(-1)at an ultrahigh current rate of 10.0 A·g^(-1).Even after 1500deep cycles at 2.0 A·g^(-1),the amorphous Sb/C electrode still maintains 86.3%of its initial capacity,which outperforms all existing Sb-based anodes reported so far.Postmortem analysis further reveals a greatly reduced volume variation of merely 34.6%for the amorphous Sb/C electrode,much lower than that of 223.1%for crystalline Sb materials.This study presents a new approach to stabilizing Sb-based alloy anodes and contributes to the construction of high-performance amorphous anode materials for LIBs,enabling advanced energy storage.展开更多
Sodium-ion batteries(SIBs)are regarded as the most promising technology for large-scale energy storage systems.However,the practical application of SIBs is still hindered by the lack of applicable cathode materials.He...Sodium-ion batteries(SIBs)are regarded as the most promising technology for large-scale energy storage systems.However,the practical application of SIBs is still hindered by the lack of applicable cathode materials.Herein,a novel phase-pure polyanionic Na_(8)Fe_(5)(SO_(4))_(9) is designed and employed as a cathode material for SIBs for the first time.The Na_(8)Fe_(5)(SO_(4))_(9) has an alluaudite-type sulfate framework and small Naþion diffusion barriers.As expected,the as-synthesized Na_(8)Fe_(5)(SO_(4))_(9)@rGO exhibits a high working potential of 3.8 V(versus Na/Naþ),a superior reversible capacity of 100.2 mAh g1 at 0.2 C,excellent rate performance(~80 mAh g1 at 10 C,~63 mAh g1 at 50 C),and an ultra-long cycling life(91.9%capacity retention after 10,000 cycles at 10 C,81%capacity retention after 20,000 cycles at 50 C).We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na_(8)Fe_(5)(SO_(4))_(9)@rGO.展开更多
Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but th...Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but the exposed active sites and stability are still rather limited.In this study,a novel one-dimensional Ag-based metal-organic framework(1D Ag-NIM-MOF)was successfully synthesized and used in the electrocatalytic CO_(2)reduction reaction(CO_(2)RR)for the first time.As a result,the Faradaic efficiency of CO achieved 94.5%with current density of 12.5 mA·cm^(-2)in an H-type cell and 98.2%with current density of 161 mA·cm^(-2)in a flow cell at–1.0 V(vs.RHE),which stands as a new benchmark of Ag-based MOFs in the electrocatalytic CO_(2)RR.The excellent performance of 1D Ag-NIM-MOF is attributed to its peculiar one-dimensional structure,which is beneficial for diffusion of reactants and products,and exposure of much more catalytic sites.Compared to commercial Ag nanoparticles,1D Ag-NIM-MOF exhibits superior electrocatalytic CO_(2)RR performance with higher catalytic activity and stability.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.22072110 and 21872107)the Key Research and Development Projects of Hubei Province,China(2022BAA083)。
文摘CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金the financial support from the National Nature Science Foundation of China(No.U20A20249)the National Key Research and Development Program of China(2021YFB3800300)the Shenzhen Science and Technology Innovation Commission(KCXST20221021111216037)。
文摘Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.
基金the funding support from the National Key R&D Program of China(2018YFE0201703)the Fundamental Research Funds for the Central Universities(2042022kf1174)。
文摘Activation of oxygen over non-precious materials has been an imperative task to develop efficient electrochemical energy storage and conversion such as fuel cells and metal-air batteries.Herein,a molten salt electrochemical modulation of metal-nitrogen-carbon based compounds(M–N–C)is achieved.By electrochemical treatment of polydopamine-coated NiCo_(2)O_(4)(NiCo_(2)O_(4)@PDA)in molten Li_(2)CO_(3)-Na_(2)CO_(3)-K_(2)CO_(3)at 500℃,Ni/Co bimetal-nitrogen-carbon catalyst(denoted as Ni/Co@NC)consisting of Ni-Co nanoparticles anchoring on porous nitrogen-doped carbon is constructed and evaluated as electrocatalysts towards the oxygen reduction reaction(ORR).Experimental and calculation results confirm that alloying of Ni-Co and nitrogen doping to carbon enhances the rate-determining transformation of*OH intermediate during ORR.The Ni/Co@NC hence shows an ORR activity comparable with the commercial Pt/C.
基金supported by the National Natural Science Foundation of China(92045302)the Fundamental Research Funds for the Central Universities(2042021 kf0213)the Hubei Provincial Natural Science Foundation of China(2019CFA065).
文摘The state-of-the-art industry based on carb on-inte nsive energy causes major concerns on energy and environmental sustainability.Carb on n eutrality is now a worldwide con sensus and an imperative task.Efficient capture and/or conversion of carbon dioxide(CO_(2))is key-enabling to achieve carbon neutrality.Challenges of the aforenamed task lie in the chemical inertness of CO_(2) and costly separation of CO_(2) from flue gases.Capture and conversion of CO_(2) on the occasions of gen eration,namely in-situ CO_(2) conversi on,are highly desired.
基金Key Research Program of Hubei Province,Grant/Award Number:2020BAA030National Nature Science Foundation of China,Grant/Award Number:U20A20249 and 21972108。
文摘Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.
基金the funding support from the National Natural Science Foundation of China(51722404,51674177,51804221 and 91845113)the National Key R&D Program of China(2018YFE0201703)+2 种基金the China Postdoctoral Science Foundation(2018M642906 and 2019T120684)the Fundamental Research Funds for the Central Universities(2042019kf0230)the Hubei Provincial Natural Science Foundation of China(2019CFA065)。
文摘The increasing demands of hydrogen and the recent discovery of large reserves of methane have prompted the conversion of methane to hydrogen.The challenges raised by intensive CO_(2) emission from the traditional conversion of methane have provoked emission-free hydrogen production from methane.The catalytic decomposition of methane(CDM) to produce hydrogen and advanced carbon hence comes into consideration due to the short process and environmental benignity.Although many researchers have made considerable progress in CDM research on the laboratory scale,CDM is still in its infancy in industrialization.The history of its development,fundamental mechanisms,and recent research progress in catalysts and catalytic systems are herein highlighted.The problems of catalytic interface degradation are reviewed,focusing on deactivation from coke deposition in the CDM process.The introduction of a liquid phase interface which can in-situ remove carbon products provides a new strategy for this process.Furthermore,the challenges and prospects for future research into novel CDM catalysts or catalyst systems are included.
基金supported by the National Natural Science Foundation of China (21573167,21633008,91545205)the Innovative Research Team in Wuhan University (2042017kf0232)+1 种基金the National Key Research and Development Program (2016YFB0101203)the Fundamental Research Funds for the Central Universities (2014203020207)
文摘The development of the hydrogen electrode is vital for the application of alkaline polymer electrolyte fuel cells(APEFCs).In this study,a series of Ni(OH)_2 decorated Ni/C catalysts(Ni(OH)_2-Ni/C) were prepared by a three-step electrochemical treatment of Ni/C.The existence of Ni(OH)_2 was demonstrated by X-ray photoelectron spectroscopy(XPS),and the surface molar ratio of Ni(OH)_2/Ni of the samples was estimated via an electrochemical method.The HOR catalytic activity of the catalysts was evaluated by a rotation disk electrode(RDE) method,and a "volcano plot" was established between the HOR exchange current(j0) and the surface molar ratio of Ni(OH)_2/Ni.On top of the "volcano",the surface molar ratio of Ni(OH)_2/Ni is1.1:1,the j0 of which was 6.8 times of that of Ni/C.The stability of the samples toward HOR was evaluated to be good.Our study added a systematic experimental evidence to the HOR research,showing that the HOR catalytic activity of Ni can be deliberately controlled via decoration of Ni(OH)_2,which may help understanding the HOR mechanism on Ni.
文摘Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.Here,we report the fabrication of PtCu3 nanodendrites possessing rich spiny branches exposing n(111)×(110)HISs.The dendrites were formed through an etching‐modulated seeding and growing strategy.Specifically,an oxidative atmosphere was initially applied to form the concaved nanocubes of the Pt‐Cu seeds,which was then switched to an inert atmosphere to promote an explosive growth of dendrites.Separately,the oxidative or inert atmosphere failed to produce this hyperbranched structure.Electrochemical dealloying of the PtCu3 nanodendrites produced Pt3Cu shells with Pt‐rich surfaces where HIS‐exposed dendrite structures were maintained.The resulting PtCu_(3)@Pt_(3)Cu@Pt nanodendrites in 0.1 M HClO4 exhibited excellent mass and area specific activities for ORR,which were 14 and 24 times higher than that of commercial Pt/C,respectively.DFT calculations revealed that Cu alloying and HISs both contributed to the significantly enhanced activity of Pt,and that the oxygen binding energy on the step sites of HISs on the PtCu_(3)@Pt_(3)Cu@Pt nanodendrites approached the optimal value to achieve a near peak‐top ORR activity.
基金the funding support from the National Natural Science Foundation of China(51722404,51674177,51804221 and 91845113)the National Key R&D Program of China(2018YFE0201703)+2 种基金the China Postdoctoral Science Foundation(2018M642906 and 2019T120684)the Fundamental Research Funds for the Central Universities(2042017kf0200)the Hubei Provincial Natural Science Foundation of China(2019CFA065)。
文摘Implementation of non-precious electrocatalysts is key-enabling for water electrolysis to relieve challenges in energy and environmental sustainability. Self-supporting Ni-V2O3 electrodes consisting of nanostrip-like V2O3 perpendicularly anchored on Ni meshes are herein constructed via the electrochemical reduction of soluble NaVO3 in molten salts for enhanced electrocatalytic hydrogen evolution. Such a special configuration in morphology and composition creates a well confined interface between Ni and V2O3. Experimental and Density-Functional-Theory results confirm that the synergy between Ni and V2O3 accelerates the dissociation of H2O for forming hydrogen intermediates and enhances the combination of H*for generating H2.
基金the funding support from the National Natural Science Foundation of China(51722404,51674177,51804221 and 91845113)the National Key R&D Program of China(2018YFE0201703)+2 种基金the China Postdoctoral Science Foundation(2018M642906 and 2019T120684)the Fundamental Research Funds for the Central Universities(2042017kf0200)the Hubei Provincial Natural Science Foundation of China(2019CFA065)。
文摘Direct conversion of biomass to functional materials is an ideal solution to relieve challenges in environmental and energy sustainability.We herein demonstrate a molten salt thermoelectrolysis of rice husks(RHs)mainly consisting of organic mass and biosilica to achieve high-efficiency and upgraded utilization of both Si and C in RHs.By coupling pyrolysis of organic mass with electrochemical reduction of silica in molten salts,the thermoelectrolysis of RHs in molten CaCl_(2)-NaCl at 800℃ refines the RHs and acidleached RHs to SiC nanowire/C(SiC-NW/C)and Si nanoparticle/C(Si-NP/C),respectively.The present study highlights the molten salt thermoelectrolysis for reclamation of biomass wastes in an affordable and controllable manner.
基金financially supported by the National Natural Science Foundation of China(22075216,21773177)the Fundamental Research Funds for Central University(2042021kf0194)。
文摘Lithium metal is the ultimate anode choice for high energy rechargeable lithium batteries owing to its ultra-high theoretical capacity,however,Li dendrites and low Coulombic efficiency(CE)caused by disordered Li plating restrict its practical application.Herein,we develop an ultrathin Sn-decorated Cu substrate(Sn@Cu)fabricated by an electroless plating method to induce ordered Li nucleation and growth behavior.The lithiophilic Sn interfacial layer is found to play a critical role to lower the Li nucleation over-potential and promote fast Li-migration kinetics,and the underlying mechanism is revealed using the first principle calculations.Accordingly,a dense dendrite-free and Li deposition with large granular morphology is obtained,which significantly improved the CE and cycling performance of Li‖Sn@Cu half cells symmetric cells.Symmetric cells using the Li-Sn@Cu electrode display a much-prolonged life span(>1200 h)with low overpotential(~18 mV)at a high current density of 1 mA cm^(-2).Moreover,full cells paired with commercial LiFePO_(4) cathode(1.8 mAh cm^(-2))deliver enhanced cycling stability(0.5 C,300 cycles)and excellent rate performance.This work provides a simple and effective way to bring about high efficiency and long lifespan substrates for practical applications.
文摘Highly active Fe-N_x sites that effectively improve the performance of non-precious metal electrocatalysts for oxygen reduction reactions(ORRs) are desirable. Herein, we propose a strategy for introducing a carbon template into a melamine/Fe-salt mixture to inductively generate highly active Fe-N_x sites for ORR. Using 57 Fe M?sbauer spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, we studied the structural composition of the Fe and N co-doped carbon catalysts.Interestingly, the results showed that this system not only converted inactive Fe and Fe-carbides into active Fe-N_4 and other Fe-nitrides, but also improved their intrinsic activities.
文摘The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs.
文摘Electrocatalysis plays a vital role in technologies of energy and environment relevance,such as water electrolysis,fuel cells,synthesis of carbon and nitrogen-based fuels,etc.The volcano relations(VRs)are general and standard tools for predicting and understanding the activity trends of electrocatalysts.The modern electrocatalytic VRs are generally based on the kinetic models with the maximum free energy(△G^(0)_(max))of reaction steps as the rate-determining term(RDT),in which some important factors that crucially impact the reaction kinetics are missed,for examples,the surface structures and coverages of reaction intermediates and spectators,other free energy demanding steps than that associated with the △G^(0)_(max),and so on.In this perspective,we first give a brief introduction of the theoretical framework of current electrocatalytic VRs and the underlying problems in the oversimplifiedDG0max-based kinetic models,and then provide an account of our effort in constructing more rational VRs for electrocatalytic reactions.We introduce a new theoretical framework of electrocatalytic VRs based on kinetic model with the so-called energetic span(δE)serving as RDT.Since the surface-coverage effects and multiple free energy-demanding steps are considered,the VRs thus obtained show several new features such as strong potential dependence,asymmetric ascending and descending branches,relatively flat tops,and so on.The effectiveness of theδE-based VRs is verified for hydrogen and oxygen electrocatalytic reactions.Finally,research directions to further rationalize the electrocatalytic VRs are discussed.
文摘Electrocatalytic CO_(2) reduction has attracted growing attention as a promising route to realize artificial carbon recycling.Proton transfer plays an essential role in CO_(2) reduction and dramatically impacts product distribution.However,the precise control of proton transfer during CO_(2) reduction remains challenging.In this study,we present a well-controlled proton transfer through the modification of several purines with similar molecular structures,and reveal a direct correlation between surface proton transfer capability and CO_(2) reduction selectivity over Cu electrode.With a moderate proton transfer capability,the guanine modification can remarkably boost CH_(4) production and suppress C2 products formation.In-situ ATR-SEIRAS suggests a weakened^(*)CO intermediate adsorption and a relatively low local pH environment after the guanine modification,which facilitates the^(*)CO protonation and detachment for CH_(4) generation.
基金Supported by the National Key Research and Development Program of China(Grant No.2018YFC0115000)the National Natural Science Foundation of China(Grant No.21603267)the Chinese Academy of Sciences(Grant No.YZ201677 and YZ201551)。
文摘Lithium deposition on graphite electrode not only reduces fast-charging capability of lithium ion batteries but also causes safety trouble.Here,a low-field^(7)Li dynamic nuclear polarization(DNP)is used to probe Li plating on the surfaces of three types of carbon electrodes:hard carbon,soft carbon and graphite.Owing to the strong Fermi contact interaction between^(7)Li and conduction electrons,the^(7)Li nuclear-magnetic-resonance(NMR)signal of Li metal deposited on electrode surface could be selectively enhanced by DNP.It is suggested that low-field^(7)Li DNP spectroscopy is a sensitive tool for investigating Li deposition on electrodes during charging/discharging processes.
基金supported by the National Natural Science Foundation of China(Nos.22279093 and 22075216)the Natural Science Foundation of Hubei Province,China(No.2022CFB096)the Fundamental Research Funds for Central University(Nos.2042022gf0005 and 2042021kf0194)。
文摘Antimony(Sb)is an intriguing anode material for Li-ion batteries(LIBs)owing to its high theoretical capacity of 660 m Ah·g^(-1)and appropriate working potential of~0.8 V(vs.Li^(+)/Li).However,just like all alloying materials,the Sb anode suffers from huge volume expansion(230%)during repeated insertion/extraction of Li+ions,resulting in structural deterioration and rapid capacity decay.In this work,a novel amorphous Sb/C composite with atomically dispersed Sb particles in carbon matrix is prepared via a straightforward high-energy ball milling approach.The intimate intermixing of amorphous Sb with C provides homogeneous element distribution and isotropic volume expansion during cycling,resulting in persistent structural stability.Meanwhile,the disordered structure of amorphous material shortens the diffusion distance of lithium ions/electrons,promoting fast reaction kinetics and rate capability.Benefiting from the aforementioned effects,the amorphous Sb/C exhibits a high reversible capacity of537.4 m Ah·g^(-1)at 0.1 A·g^(-1)and retains 201.0 m Ah·g^(-1)at an ultrahigh current rate of 10.0 A·g^(-1).Even after 1500deep cycles at 2.0 A·g^(-1),the amorphous Sb/C electrode still maintains 86.3%of its initial capacity,which outperforms all existing Sb-based anodes reported so far.Postmortem analysis further reveals a greatly reduced volume variation of merely 34.6%for the amorphous Sb/C electrode,much lower than that of 223.1%for crystalline Sb materials.This study presents a new approach to stabilizing Sb-based alloy anodes and contributes to the construction of high-performance amorphous anode materials for LIBs,enabling advanced energy storage.
基金support from the National Nature Science Foundation of China(Nos.U20A20249,21972108,and 22209125).
文摘Sodium-ion batteries(SIBs)are regarded as the most promising technology for large-scale energy storage systems.However,the practical application of SIBs is still hindered by the lack of applicable cathode materials.Herein,a novel phase-pure polyanionic Na_(8)Fe_(5)(SO_(4))_(9) is designed and employed as a cathode material for SIBs for the first time.The Na_(8)Fe_(5)(SO_(4))_(9) has an alluaudite-type sulfate framework and small Naþion diffusion barriers.As expected,the as-synthesized Na_(8)Fe_(5)(SO_(4))_(9)@rGO exhibits a high working potential of 3.8 V(versus Na/Naþ),a superior reversible capacity of 100.2 mAh g1 at 0.2 C,excellent rate performance(~80 mAh g1 at 10 C,~63 mAh g1 at 50 C),and an ultra-long cycling life(91.9%capacity retention after 10,000 cycles at 10 C,81%capacity retention after 20,000 cycles at 50 C).We use various techniques and computational methods to comprehensively investigate the electrochemical reaction mechanisms of Na_(8)Fe_(5)(SO_(4))_(9)@rGO.
基金supported by the National Natural Science Foundation of China(Nos.22172116 and 21773176)Natural Science Foundation of Hubei Province(2022CFB130).
文摘Comprehensive Summary Electrocatalytic reduction of CO_(2)to valuable products possesses huge potential to alleviate environmental and energy crisis.It is well known that Ag favors the conversion of CO_(2)to CO but the exposed active sites and stability are still rather limited.In this study,a novel one-dimensional Ag-based metal-organic framework(1D Ag-NIM-MOF)was successfully synthesized and used in the electrocatalytic CO_(2)reduction reaction(CO_(2)RR)for the first time.As a result,the Faradaic efficiency of CO achieved 94.5%with current density of 12.5 mA·cm^(-2)in an H-type cell and 98.2%with current density of 161 mA·cm^(-2)in a flow cell at–1.0 V(vs.RHE),which stands as a new benchmark of Ag-based MOFs in the electrocatalytic CO_(2)RR.The excellent performance of 1D Ag-NIM-MOF is attributed to its peculiar one-dimensional structure,which is beneficial for diffusion of reactants and products,and exposure of much more catalytic sites.Compared to commercial Ag nanoparticles,1D Ag-NIM-MOF exhibits superior electrocatalytic CO_(2)RR performance with higher catalytic activity and stability.