This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
This paper discusses problem IEP:Given n×m matrix X and m×m diagonal matrix A, find an n×n matrix A such that AX=XA.The new solvablily conditions for the problem IEP are obtained. The eigenvalue dislrib...This paper discusses problem IEP:Given n×m matrix X and m×m diagonal matrix A, find an n×n matrix A such that AX=XA.The new solvablily conditions for the problem IEP are obtained. The eigenvalue dislribulaion of the solutions for the problem IEP are described in detail.展开更多
In this paper, we study the approximation problem on the closed convex cone, and prove that there exists a unique solution of the approximation problem, then give the algorithm to compute the unique solution.
A = (a[sub ij]) ∈ R[sup n×n] is termed bisymmetric matrix if a[sub ij] = a[sub ji] = a[sup n ? j + 1, n ? i + 1], i, j = 1, 2 ··· n. We denote the set of all n x n bisymmetric matrices by BSR[sup ...A = (a[sub ij]) ∈ R[sup n×n] is termed bisymmetric matrix if a[sub ij] = a[sub ji] = a[sup n ? j + 1, n ? i + 1], i, j = 1, 2 ··· n. We denote the set of all n x n bisymmetric matrices by BSR[sup n x n]. This paper is mainly concerned with solving the following two problems: Problem I. Given X, B ∈ R[sup n×m], find A ∈ P[sub n] such that AX = B, where P[sub n] = {A ∈ BSR[sup n×n]| x[sup T] Ax ≥ 0, ?x ∈ R[sup n]}. Problem II. Given A[sup *] ∈ R[sup n×n], find ? ∈ S[sub E] such that ||A[sup *] - ?||[sub F] = ... ||A[sup *] - A||[sub F] where || · ||[sub F] is Frobenius norm, and S[sub E] denotes the solution set of problem I. The necessary and sufficient conditions for the solvability of problem I have been studied. The general form of S[sub E] has been given. For problem II the expression of the solution has been provided. [ABSTRACT FROM AUTHOR]展开更多
Presents information on a study which discussed the inverse eigenvalue problem used in engineering. Solvability conditions and general form of the solutions in real number field; Theorems; Expression of solution.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
文摘This paper discusses problem IEP:Given n×m matrix X and m×m diagonal matrix A, find an n×n matrix A such that AX=XA.The new solvablily conditions for the problem IEP are obtained. The eigenvalue dislribulaion of the solutions for the problem IEP are described in detail.
基金Research supported by National Natural Science Foundation of China(10171031).
文摘In this paper, we study the approximation problem on the closed convex cone, and prove that there exists a unique solution of the approximation problem, then give the algorithm to compute the unique solution.
文摘A = (a[sub ij]) ∈ R[sup n×n] is termed bisymmetric matrix if a[sub ij] = a[sub ji] = a[sup n ? j + 1, n ? i + 1], i, j = 1, 2 ··· n. We denote the set of all n x n bisymmetric matrices by BSR[sup n x n]. This paper is mainly concerned with solving the following two problems: Problem I. Given X, B ∈ R[sup n×m], find A ∈ P[sub n] such that AX = B, where P[sub n] = {A ∈ BSR[sup n×n]| x[sup T] Ax ≥ 0, ?x ∈ R[sup n]}. Problem II. Given A[sup *] ∈ R[sup n×n], find ? ∈ S[sub E] such that ||A[sup *] - ?||[sub F] = ... ||A[sup *] - A||[sub F] where || · ||[sub F] is Frobenius norm, and S[sub E] denotes the solution set of problem I. The necessary and sufficient conditions for the solvability of problem I have been studied. The general form of S[sub E] has been given. For problem II the expression of the solution has been provided. [ABSTRACT FROM AUTHOR]
基金Supported by the National Nature Science Fundation of China.
文摘Presents information on a study which discussed the inverse eigenvalue problem used in engineering. Solvability conditions and general form of the solutions in real number field; Theorems; Expression of solution.