The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in th...The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.展开更多
The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closel...The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closely related to uranium mineralization.The textures major and trace elements,S-He-Ar isotopes compositions of pyrites in ores of different grade were observed and/or analyzed by optical microscope,scanning electron microscope,electron microprobe,laser ablation inductively coupled plasma mass spectrometry,and noble gas mass spectrometer(Helix-SFT).It is observed that these U-related pyrites are generally euhedral-subhedral with dissolution textures,anhedral variety with colloform texture veinlet and fine particles,and the color of the associated minerals is mostly dark hue,such as purple-black fluorite dark-red hematite,and dark-green chlorite,etc.The analytical results show that the average compositions of major elements in pyrite are FeS1.944.Pyrites are characterized by S-deficiency,low content of Co and Th,and Co/Ni>1which indicate that these ores are of low-temperature hydrothermal origin.We found that the higher the grade of ore,the more deficient in S,the more obvious negative δ^34S,and the higher REE content(close to U-rich granitic pluton)of pyrite.The S-He-Ar isotopic compositions of various varieties of pyrites indicate that the ore-forming fluids mainly come from crust-derived fluids and mixed with mantle-derived fluids.展开更多
The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Th...The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Then a widespread anatexis took place and numerous widely distributed felsic leucosomes formed.The majority of these leucosomes are parallel to the schistosity of the complex or are present as stockworks,as thin layers,or as lenses at different scales in the host rocks.Here,we report new petrographic data,zircon LA-ICP-MS U-Pb ages,and Lu–Hf isotopic data for felsic leucosomes within this complex.Anatexis,as identified by the petrological study of felsic leucosomes in the field and in thin sections,involved initial ternary feldspar exsolving to produce antiperthite and a quartz+plagioclase±K-feldspar+sericite mineral assemblage around feldspar grain boundaries.Dissolution is apparent along muscovite grain boundaries,and residual sericite is present around the margins of feldspar and quartz,all suggesting that anatexis was driven by reactions involving muscovite.Zircon U–Pb dating indicates that the felsic leucosomes within the complex formed at 2467–2369 Ma.The majority of samples have positiveεHf(t)values,although a few have negative values,suggesting their formation from magmas predominantly sourced from the depleted mantle,possibly with the involvement of minor amounts of crustal materials.Two-stage Hf model ages andεHf(t)values for these samples are consistent with those for gneisses of the basement,indicating that the felsic leucosomes were formed by the anatexis of gneisses and both of their protolith formed during the formation of continental crust in Meso-Neoarchean(ca.3.1–2.7 Ga).As such,the crystallization age of the felsic leucosome(~2.4 Ga)represents the timing of regional anatexis and a change to post-orogenic tectonism.And this anatexis is also corresponds to the thermal event in Dharwar craton in India which has a pronounced similar Precambrian geology with Madagascar,providing an important constraints on the correlation of the two continental fragments.展开更多
基金funded by the project titled Prospect Survey and Exploration Demonstration of Hardrock Mineral Resources such as Uranium and Thorium(12120115014101)initiated by the Tianjin Center of China Geological Survey.The data and achievements cited in this paper are mainly from relevant scientific research,geological survey,and mineral exploration projects undertaken by the No.302 Brigade of Hunan Nuclear Industry Geology Bureau in recent years.
文摘The central Zhuguang Mountains in Hunan Province is located at the junction of the three provinces,namely Hunan,Jiangxi,and Guangdong,where the famous Lujing uranium ore field lies.The uranium deposits occurring in this area are all granite-related and they can be divided into three types,namely endogranitic ones,perigranitic ones,and contact zone types.The endogranitic uranium deposits are mainly controlled by the structural alteration zones developing within granites,with fragmentation,hematitization,and alkali metasomatism as their main mineralization characteristics.The perigranitic uranium deposits are mainly produced in the carbonaceous,siliceous,and argillaceous composite layers of epimetamorphic rocks and are controlled by fractured zones formed due to interlayer compression.The contact zone type uranium deposits mainly occur in the contact parts between the granites and favorable horizons.They have developed in favorable sections where multiple sets of structures are combined and intersected.The main metallogenic regularities of uranium in the central Zhuguang Mountains are as follows.The basic conditions for the uranium mineralization in this area include the framework consisting of regional deep large faults and their associated multi-set multi-direction favorable metallogenic structures,multi-cycle and multi-stage uranium-rich rock masses,and uranium-rich folded basement.Meanwhile,the uranium deposits in this area are closely related to granites in terms of genesis and space and they are formed in different structural parts subject to the same metallization.Furthermore,based on the summary of the characteristics and regularities of uranium mineralization in this area,the controlling factors of different types of uranium deposits in the area were explored and six metallogenic target areas were predicted.All these will provide references for the exploration of uranium deposits in this area.
基金supported by the Science and Technology Research Project of China Nuclear Geology(No.2110400024)Uranium Geological Exploration Fund Project of China National Nuclear Corporation(No.J2012-03)+1 种基金Uranium Mine Exploration Project of Hunan Nuclear Geology(No.DK30620170512)Scientific Research Program of Hunan Nuclear Geology(No.KYQ-306-01)。
文摘The Sanjiu uranium ore field,located in the central of Zhuguangshan granitic batholith,is a newly discovered granite-related uranium ore field in South China.The main sulfide in the ore field is pyrite,which is closely related to uranium mineralization.The textures major and trace elements,S-He-Ar isotopes compositions of pyrites in ores of different grade were observed and/or analyzed by optical microscope,scanning electron microscope,electron microprobe,laser ablation inductively coupled plasma mass spectrometry,and noble gas mass spectrometer(Helix-SFT).It is observed that these U-related pyrites are generally euhedral-subhedral with dissolution textures,anhedral variety with colloform texture veinlet and fine particles,and the color of the associated minerals is mostly dark hue,such as purple-black fluorite dark-red hematite,and dark-green chlorite,etc.The analytical results show that the average compositions of major elements in pyrite are FeS1.944.Pyrites are characterized by S-deficiency,low content of Co and Th,and Co/Ni>1which indicate that these ores are of low-temperature hydrothermal origin.We found that the higher the grade of ore,the more deficient in S,the more obvious negative δ^34S,and the higher REE content(close to U-rich granitic pluton)of pyrite.The S-He-Ar isotopic compositions of various varieties of pyrites indicate that the ore-forming fluids mainly come from crust-derived fluids and mixed with mantle-derived fluids.
基金funded by the National Key R&D Program of China(grant numbers 2019YFC0605202 and 2019YFC0605203)Geological Survey Project grants from the China Geological Survey(grant numbers 12120113102100,DD20160056)+3 种基金Research Program of Department of Land and Resources of Hunan Province(grant number 2018-02)the Chinese National Non-Profit Institute Research Grant of CAGS-IMR(grant number IMRKK1927)the National Natural Science Foundation of China(41872096)the Chinese National Non-profit Institute Research Grant of CAGS(JYYWF201814)。
文摘The Berere HTHP Complex belt in Maevatanana area of north–central Madagascar formed in the^2.5 Ga orogeny and underwent high temperature(up to 1050℃)and high pressure(up to 11.5 kbar)granulite facies metamorphism.Then a widespread anatexis took place and numerous widely distributed felsic leucosomes formed.The majority of these leucosomes are parallel to the schistosity of the complex or are present as stockworks,as thin layers,or as lenses at different scales in the host rocks.Here,we report new petrographic data,zircon LA-ICP-MS U-Pb ages,and Lu–Hf isotopic data for felsic leucosomes within this complex.Anatexis,as identified by the petrological study of felsic leucosomes in the field and in thin sections,involved initial ternary feldspar exsolving to produce antiperthite and a quartz+plagioclase±K-feldspar+sericite mineral assemblage around feldspar grain boundaries.Dissolution is apparent along muscovite grain boundaries,and residual sericite is present around the margins of feldspar and quartz,all suggesting that anatexis was driven by reactions involving muscovite.Zircon U–Pb dating indicates that the felsic leucosomes within the complex formed at 2467–2369 Ma.The majority of samples have positiveεHf(t)values,although a few have negative values,suggesting their formation from magmas predominantly sourced from the depleted mantle,possibly with the involvement of minor amounts of crustal materials.Two-stage Hf model ages andεHf(t)values for these samples are consistent with those for gneisses of the basement,indicating that the felsic leucosomes were formed by the anatexis of gneisses and both of their protolith formed during the formation of continental crust in Meso-Neoarchean(ca.3.1–2.7 Ga).As such,the crystallization age of the felsic leucosome(~2.4 Ga)represents the timing of regional anatexis and a change to post-orogenic tectonism.And this anatexis is also corresponds to the thermal event in Dharwar craton in India which has a pronounced similar Precambrian geology with Madagascar,providing an important constraints on the correlation of the two continental fragments.