Vegetation ecosystem simulation and visualisation are challenging topics involving multidisciplinary aspects. In this paper, we present a new generic frame for the simulation of natural phenomena through manageable an...Vegetation ecosystem simulation and visualisation are challenging topics involving multidisciplinary aspects. In this paper, we present a new generic frame for the simulation of natural phenomena through manageable and interacting models. It focuses on the functional growth of large vegetal ecosystems, showing coherence for scales ranging from the individual plant to communities and with a particular attention to the effects of water resource competition between plants. The proposed approach is based on a model of plant growth in interaction with the environmental conditions. These are deduced from the climatic data (light, temperature, rainfall) and a model of soil hydrological budget. A set of layers is used to store the water resources and to build the interfaces between the environmental data and landscape components: temperature, rain, light, altitude, lakes, plant positions, biomass, cycles, etc. At the plant level, the simulation is performed for each individual by a structural-functional growth model, interacting with the plant's environment. Temperature is spatialised, changing according to altitude, and thus locally controls plant growth speed. The competition for water is based on a soil hydrological model taking into account rainfalls, water runoff, absorption, diffusion, percolation in soil. So far, the incoming light radiation is not studied in detail and is supposed constant. However, competition for light between plants is directly taken into account in the plant growth model. In our implementation, we propose a simple architecture for such a simulator and a simulation scheme to synchronise the water resource updating (on a temporal basis) and the plant growth cycles (determined by the sum of daily temperatures). The visualisation techniques are based on sets of layers, allowing both morphological and functional landscape views and providing interesting tools for ecosystem management. The implementation of the proposed frame leads to encouraging results that are presented and illustrate simple academic cases.展开更多
This article is devoted to the construction of a numerical scheme to solve the equations of radiative hydrodynamics.We use this numerical procedure to compute shock profiles and illustrate some earlier theoretical res...This article is devoted to the construction of a numerical scheme to solve the equations of radiative hydrodynamics.We use this numerical procedure to compute shock profiles and illustrate some earlier theoretical results about their smoothness and monotonicity properties.We first consider a scalar toy model,then we extend our analysis to a more realistic system for the radiative hydrodynamics that couples the Euler equations and an elliptic equation.展开更多
基金This work is supported by the National Natural Science Foundation of China under Grant No.60473110 and by LIAMAGREENLAB Project.
文摘Vegetation ecosystem simulation and visualisation are challenging topics involving multidisciplinary aspects. In this paper, we present a new generic frame for the simulation of natural phenomena through manageable and interacting models. It focuses on the functional growth of large vegetal ecosystems, showing coherence for scales ranging from the individual plant to communities and with a particular attention to the effects of water resource competition between plants. The proposed approach is based on a model of plant growth in interaction with the environmental conditions. These are deduced from the climatic data (light, temperature, rainfall) and a model of soil hydrological budget. A set of layers is used to store the water resources and to build the interfaces between the environmental data and landscape components: temperature, rain, light, altitude, lakes, plant positions, biomass, cycles, etc. At the plant level, the simulation is performed for each individual by a structural-functional growth model, interacting with the plant's environment. Temperature is spatialised, changing according to altitude, and thus locally controls plant growth speed. The competition for water is based on a soil hydrological model taking into account rainfalls, water runoff, absorption, diffusion, percolation in soil. So far, the incoming light radiation is not studied in detail and is supposed constant. However, competition for light between plants is directly taken into account in the plant growth model. In our implementation, we propose a simple architecture for such a simulator and a simulation scheme to synchronise the water resource updating (on a temporal basis) and the plant growth cycles (determined by the sum of daily temperatures). The visualisation techniques are based on sets of layers, allowing both morphological and functional landscape views and providing interesting tools for ecosystem management. The implementation of the proposed frame leads to encouraging results that are presented and illustrate simple academic cases.
文摘This article is devoted to the construction of a numerical scheme to solve the equations of radiative hydrodynamics.We use this numerical procedure to compute shock profiles and illustrate some earlier theoretical results about their smoothness and monotonicity properties.We first consider a scalar toy model,then we extend our analysis to a more realistic system for the radiative hydrodynamics that couples the Euler equations and an elliptic equation.