期刊文献+
共找到53篇文章
< 1 2 3 >
每页显示 20 50 100
Synthesis methods and powder quality of titanium monocarbide
1
作者 Maoqiao Xiang Wenjun Ding +1 位作者 Qinghua Dong Qingshan Zhu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期10-18,共9页
Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of hig... Titanium monocarbide(TiC),which is the most stable titanium-based carbide,has attracted considerable interest in the fields of energy,catalysis,and structural materials due to its excellent properties.Synthesis of high-quality TiC powders with low cost and high efficiency is crucial for industrial applications;however major challenges face its realization.Herein,the methods for synthesizing TiC powders based on a reaction system are reviewed.This analysis is focused on the underlying mechanisms by which synthesis methods affect the quality of powders.Notably,strategies for improving the synthesis of highquality powders are analyzed from the perspective of enhancing heat and mass transfer processes.Furthermore,the critical issues,challenges,and development trends of the synthesis technology and application of high-quality TiC powder are discussed. 展开更多
关键词 Titanium carbide Synthesis methods Reaction engineering Reaction kinetics Powder technology
下载PDF
Development of calcium coke for CaC2 production using calcium carbide slag and coking coal 被引量:7
2
作者 Xu-zhong Gong Jun-qiang Zhang +5 位作者 Zhi Wang Dong Wang Jun-hao Liu Xiao-dong Jing Guo-yu Qian Chuan Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第1期76-87,共12页
A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste g... A type of calcium coke was developed for use in the oxy-thermal process of calcium carbide production.The calcium coke was prepared by the co-pyrolysis of coking coal and calcium carbide slag, which is a solid waste generated from the chlor-alkali industry.The characteristics of the calcium cokes under different conditions were analyzed experimentally and theoretically.The results show that the thermal strength of calcium coke increased with the increase in the coking coal proportion, and the waterproof property of calcium coke also increased with increased carbonation time.The calcium coke can increase the contact area of calcium and carbon in the calcium carbide production process.Furthermore, the pore structure of the calcium coke can enhance the diffusion of gas inside the furnace, thus improving the efficiency of the oxy-thermal technology. 展开更多
关键词 calcium carbide slag calcium carbide production calcium coke thermal strength waterproof property
下载PDF
Operando HERFD-XANES and surface sensitive Δμ analyses identify the structural evolution of copper(Ⅱ) phthalocyanine for electroreduction of CO_(2) 被引量:5
3
作者 Bingbao Mei Cong Liu +6 位作者 Ji Li Songqi Gu Xianlong Du Siyu Lu Fei Song Weilin Xu Zheng Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期1-7,I0001,共8页
The quantitative understanding of how atomic-level catalyst structural changes affect the reactivity of the electrochemical CO_(2)reduction reaction is challenging.Due to the complexity of catalytic systems,convention... The quantitative understanding of how atomic-level catalyst structural changes affect the reactivity of the electrochemical CO_(2)reduction reaction is challenging.Due to the complexity of catalytic systems,conventional in situ X-ray spectroscopy plays a limited role in tracing the underlying dynamic structural changes in catalysts active sites.Herein,operando high-energy resolution fluorescence-detected X-ray absorption spectroscopy was used to precisely identify the dynamic structural transformation of well-defined active sites of a representative model copper(Ⅱ)phthalocyanine catalyst which is of guiding significance in studying single-atom catalysis system.Comprehensive X-ray spectroscopy analyses,including surface sensitive△μspectra which isolates the surface changes by subtracting the disturb of bulk base and X-ray absorption near-edge structure spectroscopy simulation,were used to discover that Cu species aggregated with increasing applied potential,which is responsible for the observed evolution of C_(2)H_(4).The approach developed in this work,characterizing the active-site geometry and dynamic structural change,is a novel and powerful technique to elucidate complex catalytic mechanisms and is expected to con tribute to the rational design of highly effective catalysts. 展开更多
关键词 Operando HERFD-XANES △μanalysis Structural evolution Copper(Ⅱ)phthalocyanine Electrochemical CO_(2)reduction reaction
下载PDF
Mechanism of CO_(2)reduction in carbonylation reaction promoted by ionic liquid additives:A computational and experimental study 被引量:2
4
作者 Kai-Lun Bi Bao-Hua Xu +2 位作者 Wei-Lu Ding Li-Jun Han Lin Ji 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期296-307,共12页
The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to C... The Ru-catalyzed carbonylation of alkenes with CO_(2)as a C1 surrogate and imidazole chlorides as the promotor is investigated by a combination of computational and experimental study.The conversion rate of CO_(2)to CO is positively correlated with the efficiency of both hydroesterification and hydroformylation,which is found facilitated in the presence of chloride additives with a decreasing order of BmimCl~B3MimCl>BmmimCl~LiCl.Taking the hydroesterification with MeOH as a representative example,BmimCl bearing C-H functionality at the C^(2)site of the cation assists the reduction of CO_(2)to CO as a hydrogen donor medium,with the anion and cation acting in a synergistic fashion.Subsequent insertion of CO_(2)into the formed Ru-H bond with the assistance of chloride anion produces the Ru-COOH species,which ultimately accelerates the activation of CO_(2). 展开更多
关键词 CO_(2)transformation CARBONYLATION Ionic liquids Synergistic effect Theoretical analysis
下载PDF
Recovery of Li_(2)CO_(3)and FePO_(4)from spent LiFePO_(4)by coupling technics of isomorphic substitution leaching and solvent extraction 被引量:2
5
作者 Yong Niu Xiaowu Peng +4 位作者 Jinfeng Li Yuze Zhang Fugen Song Dong Shi Lijuan Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期306-315,共10页
Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution lea... Efficient and low-cost recycling of spent lithium iron phosphate(LiFePO_(4),LFP)batteries has become an inevitable trend.In this study,an integrated closed-loop recycling strategy including isomorphic substitution leaching and solvent extraction process for spent LFP was proposed.An inexpensive FeCl_(3)was used as leaching agent to directly substitute Fe^(2+)from LFP.99%of Li can be rapidly leached in just 30 min,accompanied by 98%of FePO_(4)precipitated in lixivium.The tri-n-butyl phosphate(TBP)-sulfonated kerosene(SK)system was applied to extract Li from lixivium through a twelve-stage countercurrent process containing synchronous extraction and stepwise stripping of Li^(+)and Fe^(3+).80.81%of Li can be selectively enriched in stripping liquor containing 3.059 mol·L^(-1)of Li^(+)under optimal conditions.And the Fe stripping liquor was recovered for LFP re-leaching,of which,Fe^(2+)was oxidized to Fe^(3+)by appropriate H_(2)O_(2).Raffinate and lixivium were concentrated and entered into extraction process to accomplished closeloop recycling process.Overall,the results suggest that more than 99%of Li was recovered.FeCl_(3)holding in solution was directly regenerated without any pollutant emission.The sustainable mothed would be an alternative candidate for total element recycling of spent LFP batteries with industrial potential. 展开更多
关键词 Spent LiFePO_(4) Leaching lithium Extraction STRIPPING RECOVERY
下载PDF
Fluidized magnetization roasting of refractory siderite-containing iron ore via preoxidation-low-temperature reduction
6
作者 Haoyan Sun Zheng Zou +1 位作者 Meiju Zhang Dong Yan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第6期1057-1066,共10页
Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery vi... Magnetization roasting is one of the most effective way of utilizing low-grade refractory iron ore.However,the reduction roasting of siderite(FeCO3)generates weakly magnetic wüstite,thus reducing iron recovery via weak magnetic separation.We systematically studied and proposed the fluidized preoxidation-low-temperature reduction magnetization roasting process for siderite.We found that the maghemite generated during the air oxidation roasting of siderite would be further reduced into wüstite at 500 and 550℃due to the unstable intermediate product magnetite(Fe_(3)O_(4)).Stable magnetite can be obtained through maghemite reduction only at low temperature.The optimal fluidized magnetization roasting parameters included preoxidation at 610℃for 2.5 min,followed by reduction at 450℃for 5 min.For roasted ore,weak magnetic separation yielded an iron ore concentrate grade of 62.0wt%and an iron recovery rate of 88.36%.Compared with that of conventional direct reduction magnetization roasting,the iron recovery rate of weak magnetic separation had greatly improved by 34.33%.The proposed fluidized preoxidation-low-temperature reduction magnetization roasting process can realize the efficient magnetization roasting utilization of low-grade refractory siderite-containing iron ore without wüstite generation and is unlimited by the proportion of siderite and hematite in iron ore. 展开更多
关键词 magnetization roasting fluidization SIDERITE preoxdization low-temperature reduction
下载PDF
Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid
7
作者 Mi Feng Bin He +4 位作者 Xinyan Chen Junli Xu Xingmei Lu Cai Jia Jian Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期133-141,共9页
Chitin is a widely used important industrial polymer mainly from shrimp shells, but its commercial preparation is under the great challenge of serious pollution due to the requirement of HCl and Na OH.Herein, we demon... Chitin is a widely used important industrial polymer mainly from shrimp shells, but its commercial preparation is under the great challenge of serious pollution due to the requirement of HCl and Na OH.Herein, we demonstrated that high purity chitin can be obtained from waste shrimp shells(WSSs) by cascade separation with transition metal salt aqueous solution and ionic liquid(IL). Firstly, calcium carbonate of WSSs was effectively removed in the metal salt aqueous solution driven by the ion exchange interaction. Subsequently, 1-butyl-3-methylimidazolium chloride([Bmim]Cl) had bifunctional abilities to remove residual protein and introduced metal salts simultaneously by hydrogen bonding and coordination interactions. The key experimental factors affecting the separation process were systematically studied, including the type of metal salts, temperature, and [Bmim]Cl loading. After sequential treatment with a 20%(mass) Ni SO4aqueous solution at 130 ℃ and [Bmim]Cl at 150 ℃, the purity of a-chitin can be up to 96.5%(mass) that meets commercial requirements. The use of metal salts with higher coordination ability makes the preparation of chitin no longer depend on the commonly acid-base reaction, which is conducive to the preservation of chitin structure. 展开更多
关键词 CHITIN Ionic liquids Transition metal salts SEPARATION Sustainability
下载PDF
A review of low-carbon technologies and projects for the global cement industry 被引量:6
8
作者 Yangyang Guo Lei Luo +4 位作者 Tingting Liu Liwei Hao Yinming Li Pengfei Liu Tingyu Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第2期682-697,共16页
Carbon dioxide(CO_(2))emissions from the cement industry account for 26%of the total industrial emissions,and the need to develop low-carbon techniques within the cement industry is extremely urgent.Low-carbon project... Carbon dioxide(CO_(2))emissions from the cement industry account for 26%of the total industrial emissions,and the need to develop low-carbon techniques within the cement industry is extremely urgent.Low-carbon projects and technologies for the cement industry in different regions and countries have been thoroughly reviewed in this manuscript,and the low-carbon development concept for each county has been analyzed.For developing countries such as China and India,energy saving and efficiency enhancement are currently the key points,while for developed countries and regions such as Europe,more efforts have been focused on carbon capture,utilization,and storage(CCUS).Global CCUS projects have been previously conducted,and the majority of CCUS projects are currently performed in Europe where major projects such as the CEMCAP,CLEANKER,and IEILAC projects represent the latest research progress in cement production technologies and low-carbon technologies for the global cement industry.The development of low-carbon cement technologies has changed from focusing on the end point to instead focusing on the source and process through the exploration of hydrogen and solar energies,and more disruptive and original technologies are expected to be developed,particularly in the cement industry in China. 展开更多
关键词 Cement industry CO_(2)emissions Low carbon development PROJECTS Carbon capture UTILIZATION and storage
原文传递
Soft coarse-grained particle model for particle-fluid systems 被引量:2
9
作者 Yanhao Ye Ji Xu Wei Ge 《Particuology》 SCIE EI CAS CSCD 2024年第1期178-193,共16页
By modeling a group of neighboring real particles as a single coarse-grained particle(CGP),discrete particle method(DPM)is now capable of simulating industrial-scale particle-fluid systems.However,a systematic approac... By modeling a group of neighboring real particles as a single coarse-grained particle(CGP),discrete particle method(DPM)is now capable of simulating industrial-scale particle-fluid systems.However,a systematic approach to determine the CGP properties and develop their interaction models is still lacking,which casts uncertainty on the predictivity of the method.In this study,collisions between predefined particle groups are analyzed to construct kernel functions for modeling the CGPs and then the model parameters are determined by equating the statistical properties of the CGPs and the real particles in the physical process studied.This approach is implemented for homogeneous cooling of granular gas,then demonstrated effective in simulating experimental fluidized beds. 展开更多
关键词 Coarse-grain(CG) Discrete particle method(DPM) Fluidized bed Multi-scale simulation
原文传递
The significance of resource recycling for coking wastewater treatment:based on environmental and economic life cycle assessment
10
作者 Di Zhang He Zhao +2 位作者 Wenfang Gao Yuxing Sheng Hongbin Cao 《Green Chemical Engineering》 EI CSCD 2024年第1期50-59,共10页
The sustainability of the coking industry is supported by reasonable production profit and environmental quality requirements.The traditional measures substantially increased the related costs for enterprises to reach... The sustainability of the coking industry is supported by reasonable production profit and environmental quality requirements.The traditional measures substantially increased the related costs for enterprises to reach standards.This paper aims to develop a comprehensive cost combined environmental impact assessment method that is necessary for the analysis of wastewater treatment systems.Typical three coking wastewater treatment processes in China were evaluated.Results showed that eutrophication dominantly contributed to the overall environmental effect.Improving effluent quality could significantly reduce the total environmental impact.In terms of an economic perspective,the price of raw materials was the main factor that affected the operating cost of comprehensive treatment.Based on subsystem analysis,the pretreatment stage accounted for the majority of environmental and cost burdens,respectively reaching 64%-78%and 64%-86%.Optimizing the pretreatment process by enhancing the efficiency of high concentration raw material recovery and substituting toxic raw materials for extractant could reduce the environmental impact and economic cost by 43.8%and 57%,respectively,which was an effective way to improve the potential performance of coking wastewater treatment plants(WWTPs). 展开更多
关键词 Life cycle assessment Environmental impact Economic evaluation Coking wastewater treatment Resource recycling Comprehensive benefits
原文传递
Pickering emulsion transport in skeletal muscle tissue:A dissipative particle dynamics simulation approach
11
作者 Xuwei Liu Wei Chen +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期65-75,共11页
Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex i... Lymph node targeting is a commonly used strategy for particulate vaccines,particularly for Pickering emulsions.However,extensive research on the internal delivery mechanisms of these emulsions,especially the complex intercellular interactions of deformable Pickering emulsions,has been surprisingly sparse.This gap in knowledge holds significant potential for enhancing vaccine efficacy.This study aims to address this by summarizing the process of lymph-node-targeting transport and introducing a dissipative particle dynamics simulation method to evaluate the dynamic processes within cell tissue.The transport of Pickering emulsions in skeletal muscle tissue is specifically investigated as a case study.Various factors impacting the transport process are explored,including local cellular tissue environmental factors and the properties of the Pickering emulsion itself.The simulation results primarily demonstrate that an increase in radial repulsive interaction between emulsion particles can decrease the transport efficiency.Additionally,larger intercellular gaps also diminish the transport efficiency of emulsion droplet particles due to the increased motion complexity within the intricate transport space compared to a single channel.This study sheds light on the nuanced interplay between engineered and biological systems influencing the transport dynamics of Pickering emulsions.Such insights hold valuable potential for optimizing transport processes in practical biomedical applications such as drug delivery.Importantly,the desired transport efficiency varies depending on the specific application.For instance,while a more rapid transport might be crucial for lymph-node-targeted drug delivery,certain applications requiring a slower release of active components could benefit from the reduced transport efficiency observed with increased particle repulsion or larger intercellular gaps. 展开更多
关键词 Pickering emulsion Skeletal muscular cells Transport phenomena Dissipative particle dynamics Drug delivery
下载PDF
Gas-phase synthesis of Ti_(2)CCl_(2) enables an efficient catalyst for lithiumsulfur batteries
12
作者 Maoqiao Xiang Zihan Shen +15 位作者 Jie Zheng Miao Song Qiya He Yafeng Yang Jiuyi Zhu Yuqi Geng Fen Yue Qinghua Dong Yu Ge Rui Wang Jiake Wei Weiliang Wang Haiming Huang Huigang Zhang Qingshan Zhu Chuanfang John Zhang 《The Innovation》 EI 2024年第1期33-40,共8页
MXenes have aroused intensive enthusiasm because of their exotic properties and promising applications.However,to date,they are usually synthesized by etching technologies.Developing synthetic technologies provides mo... MXenes have aroused intensive enthusiasm because of their exotic properties and promising applications.However,to date,they are usually synthesized by etching technologies.Developing synthetic technologies provides more opportunities for innovation and may extend unexplored applications.Here,we report a bottom-up gas-phase synthesis of Cl-terminated MXene(Ti_(2)CCl_(2)).The gas-phase synthesis endows Ti_(2)CCl_(2) with unique surface chemistry,high phase purity,and excellent metallic conductivity,which can be used to accelerate polysulfide conversion kinetics and dramatically prolong the cyclability of Li-S batteries.In-depth mechanistic analysis deciphers the origin of the formation of Ti_(2)CCl_(2) and offers a paradigm for tuning MXene chemical vapor deposition.In brief,the gas-phase synthesis transforms the synthesis of MXenes and unlocks the hardly achieved potentials of MXenes. 展开更多
关键词 SYNTHESIS PHASE LITHIUM
原文传递
Coalescence separation of oil water emulsion on amphiphobic fluorocarbon polymer and silica nanoparticles coated fiber-bed coalescer 被引量:4
13
作者 Qian Zhang Lei Li +2 位作者 Lixia Cao Yanxiang Li Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期29-37,共9页
Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively se... Discharging untreated oily wastewater into the environment disrupts the ecological balance,which is a global problem that requires urgent solutions.Superhydrophilic and superoleophilic fibrous medium(FM)effectively separated oil–water emulsion as it was hydrophobic underwater.But its separation efficiencies(SEs)first increased to 98.9%,then dropped to 97.6%in 10 min because of oil-fouling.To tackle this problem,FM deposited with 0%–10%silica nanoparticle(NPsFMs),then coated by fluorocarbon polymer(X-[CH_(2)CH_(2)O]nCH_(2)CH_(2)O-Y-NH-COOCH_(2)C4F9)(FCNPs FMs),was used to enhance its roughness and regulate its initial wettability to improve the anti-fouling property.FCFM and FCNPs FMs were hydrophobic and oleophobic in air and oleophobic underwater.Their water contact angles,oil contact angles and oil contact angles were 115.3°–121.1°,128.8°–136.5°,and 131.6°–136.7°,respectively,meeting the requirement of 90°–140°for coalescence separation.FCNPs FM-5 had the best separation performance with a constant value of 99.8%in 10 min,while that of FCNPs FM-10 slightly decreased to 99.5%.Theoretical released droplet(TRD)diameter,calculated by the square root of the product of pore radius and fiber diameter,was used for the evaluation of coalescence performance.Analyzed by two ideal models,TRD diameter and fiber diameter showed a parabola type relationship,proving that the separation efficiency was a collaborative work of wettability,pore size and fiber diameter.Also,it explained the SEs reduction from FCNPs FM-5 to FCNPs FM-10 was revelent to the three parameters.Moreover,FCNPsFMs effectively separated emulsions stabilized by cationic surfactant CTAB(SEs:97.3%–98.4%)and anionic surfactant SDBS(SEs:91.3%–93.4%).But they had an adverse effect on nonionic surfactant Tween-80 emulsion separation(SEs:94.0%–71.76%).Emulsions made by diverse oils can be effectively separated:octane(SEs:99.4%–100%),rapeseed oil(SEs:97.3%–98.8%),and diesel(SEs:95.2%–97.0%).These findings provide new insights for designing novel materials for oil–water separation by coalescence mechanism. 展开更多
关键词 Oil–water separation Fluorocarbon polymer Amphiphobic COALESCENCE
下载PDF
Improve titanate reduction by electro-deoxidation of Ca_(3)Ti_(2)O_(7) precursor in molten CaCl_(2) 被引量:3
14
作者 Dong Wang Sheng Pang +3 位作者 Chun-yue Zhou Yan Peng Zhi Wang Xu-zhong Gong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第12期1618-1625,共8页
The low O^(2-)diffusion rate in the electro-deoxidation of titanium containing compounds by either the OS process or the FFC process leads to a low reaction speed and a low current efficiency.In this study,Ca_(3)Ti_(2... The low O^(2-)diffusion rate in the electro-deoxidation of titanium containing compounds by either the OS process or the FFC process leads to a low reaction speed and a low current efficiency.In this study,Ca_(3)Ti_(2)O_(7) was used as a precursor to improve the reduction speed of titanium.Because of the greater number of"diffusion channels"created in cathode as Ca^(2+) liberates from Ca_(3)Ti_(2)O_(7) precursor in the electrodeoxidation process,the O^(2-)diffusion rate was improved significantly by using Ca_(3)Ti_(2)O_(7) instead of CaTiO3 as precursor.Parallel constant voltage electrolysis(3.2 V)confirms that Ca_(3)Ti_(2)O_(7) and CaTiO3 are reduced simultaneously because of their similar crystal structures.However,the reduction area of Ca_(3)Ti_(2)O_(7) spreads much faster than that of CaTiO3,indicating a difference in the O^(2-) diffusion rate.Constant voltage cyclic voltammetry(CV)and theoretical analysis of the crystal structure were also conducted to compare the differences between Ca_(3)Ti_(2)O_(7) and CaTiO3.The results indicate that using a precursor with a greater number of soluble cations,titanium reduction speed can be greatly improved in the electro-deoxidation process.Finally,a new electrolysis method for converting and recycling excess CaO from the Ca_(3)Ti_(2)O_(7) precursor was proposed. 展开更多
关键词 calcium titanate Ca_(3)Ti_(2)O_(7) molten calcium chloride solid-state reaction reaction speed
下载PDF
Enhanced coalescence separation of oil-in-water emulsions using electrospun PVDF nanofibers 被引量:2
15
作者 Yujie Yang Lei Li +4 位作者 Qian Zhang Wenwen Chen Song Lin Zaiqian Wang Wangliang Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第10期76-83,共8页
A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electr... A novel and high-efficiency coalescence membrane enhanced by nano-sized polyvinylidene fluoride(PVDF)nanofibers based on polyester(PET)substrate was fabricated using electrospinning method.The properties of the electrospun nanofibers such as roughness and surface morphology greatly affected the oil droplet interception efficiency and surface wettability of the membrane.A series of coalescence units were prepared with different layers of nanofibrous membrane and the separation efficiencies at different initial concentrations,flow rates,and oil types were tested.It is very interesting that the obtained nanofibrous membrane exhibited superoleophilicity in air but poor oleophilicity under water,which was beneficial to the coalescence process.The coalescence unit with four membrane layers had excellent performances under different initial concentrations and flow rates.The separation efficiency of the 4-layers unit remained above 98.2%when the initial concentration reached up to 2000 mg·L-1.Furthermore,the unit also exhibited good performance with the increasing oil density and viscosity,which is promising for large-scale oil wastewater treatment. 展开更多
关键词 COALESCENCE ELECTROSPINNING Nanofibrous membrane Oil-in-water emulsions
下载PDF
Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate(BHET)in different solvents 被引量:1
16
作者 Haoyu Yao Dongxia Yan +3 位作者 Xingmei Lu Qing Zhou Yinan Bao Junli Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第5期294-300,共7页
Studies on the degradation process of waste polyethylene terephthalate(PET)have become increasingly mature,but there are relatively few studies on the separation of degradation products.The products contain many compo... Studies on the degradation process of waste polyethylene terephthalate(PET)have become increasingly mature,but there are relatively few studies on the separation of degradation products.The products contain many components and the separation of which is difficult.Therefore,the study on phase equilibrium thermodynamics of bis-2-hydroxyethyl terephthalate(BHET)is of great theoretical significance and practical value to provide basic data for the BHET crystallization separation.In this work,the degraded products were purified and characterized.The solubility of BHET in methanol,ethanol,ethylene glycol,water and the mixture of ethylene glycol+water were determined by static method.The experimental results were correlated with different models,such as ideal solution(IS)model,λh equation,Apelblat equation and NRTL model.Based on the van’t Hoff equation,the mixing Gibbs energy,enthalpy and entropy were calculated.From this work,the basic data which can be used to guide the crystallization process of BHET were obtained,including solubility data,correlation model and thermodynamic properties. 展开更多
关键词 Bis-2-hydroxyethyl terephthalate Purified Characterized SOLUBILITY Correlation model Thermodynamics properties
下载PDF
Discrete particle methods for engineering simulation:Reproducing mesoscale structures in multiphase systems 被引量:1
17
作者 Ji Xu Peng Zhao +2 位作者 Yong Zhang Junwu Wang Wei Ge 《Resources Chemicals and Materials》 2022年第1期69-79,共11页
Most natural resources are processed as particle-fluid multiphase systems in chemical,mineral and material indus-tries,therefore,discrete particles methods(DPM)are reasonable choices of simulation method for engineeri... Most natural resources are processed as particle-fluid multiphase systems in chemical,mineral and material indus-tries,therefore,discrete particles methods(DPM)are reasonable choices of simulation method for engineering the relevant processes and equipments.However,direct application of these methods is challenged by the complex multiscale behavior of such systems,which leads to enormous computational cost or otherwise qualitatively inac-curate description of the mesoscale structures.The coarse-grained DPM based on the energy-minimization multi-scale(EMMS)model,or EMMS-DPM,was proposed to reduce the computational cost by several orders while main-taining an accurate description of the mesoscale structures,which paves the way for its engineering applications.Further empowered by the high-efficiency multi-scale DEM software DEMms and the corresponding customized heterogeneous supercomputing facilities with graphics processing units(GPUs),it may even approach realtime simulation of industrial reactors.This short review will introduce the principle of DPM,in particular,EMMS-DPM,and the recent developments in modeling,numerical implementation and application of large-scale DPM which aims to reach industrial scale on one hand and resolves mesoscale structures critical to reaction-transport coupling on the other hand.This review finally prospects on the future developments of DPM in this direction. 展开更多
关键词 COARSE-GRAINING Discrete element method(DEM) EMMS-DPM(EMMS-based discrete particle method) GPU-CPU heterogeneous computing MESOSCALE
下载PDF
Molecular Dynamic Regulation of Na and Mg Ions on Lithium Carbonate Crystallisation in Salt Lakes
18
作者 MA Yanfang XIANG Shaoji +2 位作者 CUI Zhenhua LI Kanshe ZHANG Zhihong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2021年第1期22-28,共7页
Lithium carbonate (Li_(2)CO_(3)) was synthesised by adding sodium (Na) and magnesium (Mg) ions into a lithium chloride solution at different concentrations,followed by the addition of an appropriate sodium carbonate s... Lithium carbonate (Li_(2)CO_(3)) was synthesised by adding sodium (Na) and magnesium (Mg) ions into a lithium chloride solution at different concentrations,followed by the addition of an appropriate sodium carbonate solution.Then,the morphology,purity and particle size of Li_(2)CO_(3) crystals were investigated.The Na and Mg ions had negligible and remarkable effects,respectively,on the product purity;however they both greatly influenced its morphology.Their effects on the nucleation and growth rates,the radial distribution function and the diffusion behaviour of the synthesised Li_(2)CO_(3) were investigated via molecular dynamics methods;the Na ions slowed down the crystal nucleation and growth rates,while the Mg ions accelerated them.Moreover,the Mg ions rendered the system short-range ordered and long-range disordered and also increased the diffusion coefficient.The results of this study showed that Mg ions are one of the most important factors influencing the purity and yield of Li_(2)CO_(3). 展开更多
关键词 SODIUM MAGNESIUM PURITY particle size diffusion coefficient analytical kinetics
原文传递
Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface
19
作者 Qingxia Xiong Ying Ren +3 位作者 Yufei Xia Guanghui Ma Reiji Noda Wei Ge 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第10期369-378,共10页
The adsorption of protein molecules to oil/water(O/W)interface is of critical importance for the product design in a wide range of technologies and industries such as biotechnology,food industry and pharmaceutical ind... The adsorption of protein molecules to oil/water(O/W)interface is of critical importance for the product design in a wide range of technologies and industries such as biotechnology,food industry and pharmaceutical industry.In this work,with ovalbumin(OVA)as the model protein,the adsorption conformations at the O/W interface and the adsorption stability have been systematically studied via multiple simulation methods,including all-atom molecular dynamic(AAMD)simulations,coarse-grained molecular dynamic(CGMD)simulations and enhanced sampling methods.The computational results of AAMD and CGMD show that the hydrophobic tail of OVA tends to be folded under long time relaxation in aqueous phase,and multiple adsorption conformations can exist at the interface due to heterogeneous interactions raising from oil and water respectively.To further study the adsorption sites of the protein,the adsorption kinetics of OVA at the O/W interface is simulated using metadynamics method combined with CGMD simulations,and the result suggests the existence of multiple adsorption conformations of OVA at interface with the head-on conformation as the most stable one.In all,this work focuses on the adsorption behaviors of OVA at squalene/water interface,and provides a theoretical basis for further functionalization of the proteins in emulsion-based products and engineering. 展开更多
关键词 Molecular dynamicssimulation METADYNAMICS Protein adsorption Structural stability OVALBUMIN
下载PDF
A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation
20
作者 He Zhao Juehua Wang +5 位作者 Zhuangjun Fan Yongbing Xie Di Zhang Shanshan Sun Yi Zhang Hongbin Cao 《Green Energy & Environment》 SCIE EI CSCD 2022年第3期440-448,共9页
N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and ... N-doped reduced graphene oxide quantum dots(N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants.However,the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps.In this study,a facile and green fabrication approach of N-rGQDs is established,based on a metal-free Fenton reaction without additional energy-input.The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance.The N-rGQDs with relatively high percentage of aromatic nitrogen(NAr-rGQDs) perform excellent catalytic activities,with which the degradation efficiency of pollutant is enhanced by 25 times.Density functional theory(DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron,presenting a key role in the catalytic reaction.This metal-free Fenton process provides a green and costeffective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications. 展开更多
关键词 reaction QUANTUM synthesis
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部