Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas...Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas±Bargmann±Michel±Telegdi equation for the transverse and longitudinal self-injection,and the depolarization process is found to be influenced by the injection schemes.In the case of transverse self-injection,as found typically in the bubble regime,the spin precession of the accelerated electrons is mainly influenced by the wakefield.However,in the case of longitudinal injection in the quasi-1D regime(for example,F.Y.Li et al.,Phys.Rev.Lett.110,135002(2013)),the direction of electron spin oscillates in the laser field.Since the electrons move around the laser axis,the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored.Finally,an ultra-short electron beam with polarization of 99%can be obtained using longitudinal self-injection.展开更多
We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the par...We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the particle-in-cell(PIC) simulation code VLPL(Virtual Laser Plasma Lab) to make theoretical predictions about the behavior of proton spins in laser-induced plasmas. Simulations of spin-polarized targets show that the polarization is conserved during the acceleration process. For the experimental realization, a polarized HCl gas-jet target is under construction using the fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and simultaneously circularly polarized light of the fifth harmonic to photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their degree of polarization is measured with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM, Shanghai.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11804348,11775056,11975154 and 11991074)the Science Challenge Project(No.TZ2018005).X.F.Li was also supported by the Shanghai Pujiang Program(No.23PJ1414600)。
文摘Polarized electron beam production via laser wakefield acceleration in pre-polarized plasma is investigated by particlein-cell simulations.The evolution of the electron beam polarization is studied based on the Thomas±Bargmann±Michel±Telegdi equation for the transverse and longitudinal self-injection,and the depolarization process is found to be influenced by the injection schemes.In the case of transverse self-injection,as found typically in the bubble regime,the spin precession of the accelerated electrons is mainly influenced by the wakefield.However,in the case of longitudinal injection in the quasi-1D regime(for example,F.Y.Li et al.,Phys.Rev.Lett.110,135002(2013)),the direction of electron spin oscillates in the laser field.Since the electrons move around the laser axis,the net influence of the laser field is nearly zero and the contribution of the wakefield can be ignored.Finally,an ultra-short electron beam with polarization of 99%can be obtained using longitudinal self-injection.
基金the JuSPARC(Julich Short-Pulse Particle and Radiation Center)projectsupported by the ATHENA(Accelerator Technology HElmholtz iNfrAstructure)consortiumgrant VSR-JPGI61 on the supercomputer JURECA
文摘We report on the concept of an innovative source to produce polarized proton/deuteron beams of a kinetic energy up to several GeV from a laser-driven plasma accelerator. Spin effects have been implemented into the particle-in-cell(PIC) simulation code VLPL(Virtual Laser Plasma Lab) to make theoretical predictions about the behavior of proton spins in laser-induced plasmas. Simulations of spin-polarized targets show that the polarization is conserved during the acceleration process. For the experimental realization, a polarized HCl gas-jet target is under construction using the fundamental wavelength of a Nd:YAG laser system to align the HCl bonds and simultaneously circularly polarized light of the fifth harmonic to photo-dissociate, yielding nuclear polarized H atoms. Subsequently, their degree of polarization is measured with a Lamb-shift polarimeter. The final experiments, aiming at the first observation of a polarized particle beam from laser-generated plasmas, will be carried out at the 10 PW laser system SULF at SIOM, Shanghai.