Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumptio...Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.展开更多
Chemical vapor deposited(CVD)diamond as a burgeoning multifunctional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications.Correspondingly,the appli...Chemical vapor deposited(CVD)diamond as a burgeoning multifunctional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications.Correspondingly,the application-related“grade”concept associated with materials choice and design was gradually formulated,of which the availability and the performance are optimally suited.In this review,the explicit diversity of CVD diamond and the clarification of typical grades for applications,i.e.,from resplendent gem-grade to promising quantum-grade,were systematically summarized and discussed,according to the crystal quality and main consideration of ubiquitous nitrogen impurity content as well as major applications.Realizations of those,from quantum-grade with near-ideal crystal to electronic-grade having extremely low imperfections and then to optical,thermal as well as mechanical-grade needing controlled flaws and allowable impurities,would competently fulfill the multi-field application prospects with appropriate choice in terms of cost and quality.Exceptionally,wide range defects and impurities in the gem-grade diamond(only indicating single crystal),which are detrimental for technology applications,endows CVD crystals with fancy colors to challenge their natural counterparts.展开更多
基金the National Key Research and Development Program of China(No.2016YFE0133200)National Natural Science Foundation of China(No.52172037)+4 种基金European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(No.734578)Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(No.2021 BH006)Beijing Municipal Natural Science Foundation(Nos.2212036 and 4192038)Science and Technology Innovation Special Project of Foshan Government(Nos.BK20BE021 and BK21BE004)Special thanks to the nation-al high-level-university sponsored graduate program of China Scholarship Council(CSC),USTB-Monte Biance Joint R&D Center and joint-postdoc research program of Shunde Graduate School of USTB.
文摘Current electronic technology based on silicon is approaching its physical and scientific limits. Carbon-based devices have numer- ous advantages for next generation electronics (e.g., fast speed, low power consumption and simple process), that when combined with the unique nature of the versatile allotropes of carbon elements, are creating an electronics revolution. Carbon electronics are greatly advancing with new preparations and sophisticated designs. In this perspective, representatives with various dimensions, e.g., carbon nanotubes, graphene, bulk diamond, and their extraordinary performance, are reviewed. The associated state-of-the-art devices and composite hybrid all-carbon structures are also emphasized to reveal their potential in the electronics field. Advances in commercial production have improved the cost effi-ciency, material quality, and device design, accelerating the promise of carbon materials.
基金This work was supported by the National Key Research and Development Program of China(Grant No.2016YFE0133200)the European Union’s Horizon 2020 Research and Innovation Staff Exchange Scheme(Grant No.734578)+6 种基金the Post-doctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing(Grant No.2021BH006)the National Natural Science Foundation of China(Grant No.52172037)the Beijing Municipal Natural Science Foundation(Grant Nos.2212036 and 4192038)the Fundamental Research Funds for the Central Universities(FRF-MP-20-49Z)the Science and Technology Innovation Special Project of Foshan Government(Grant Nos.BK20BE021 and BK21BE004)Special thanks to the Guangdong Basic and Applied Basic Research Foundation(Grant No.2021A1515110631)the national high-level-university sponsored graduate program of China Scholarship Council(CSC No.201806460089),USTB-Monte Biance Joint R&D Center.
文摘Chemical vapor deposited(CVD)diamond as a burgeoning multifunctional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications.Correspondingly,the application-related“grade”concept associated with materials choice and design was gradually formulated,of which the availability and the performance are optimally suited.In this review,the explicit diversity of CVD diamond and the clarification of typical grades for applications,i.e.,from resplendent gem-grade to promising quantum-grade,were systematically summarized and discussed,according to the crystal quality and main consideration of ubiquitous nitrogen impurity content as well as major applications.Realizations of those,from quantum-grade with near-ideal crystal to electronic-grade having extremely low imperfections and then to optical,thermal as well as mechanical-grade needing controlled flaws and allowable impurities,would competently fulfill the multi-field application prospects with appropriate choice in terms of cost and quality.Exceptionally,wide range defects and impurities in the gem-grade diamond(only indicating single crystal),which are detrimental for technology applications,endows CVD crystals with fancy colors to challenge their natural counterparts.