It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage...It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development.展开更多
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(...Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.展开更多
Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport cha...Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.展开更多
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b...Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.展开更多
High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incom...High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.展开更多
KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele...KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.展开更多
The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffract...The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.展开更多
In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 μm diameter Pt disk electrod...In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 μm diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied. It was found that the dispersed CoHCF powder in the PEG paste can generate well shaped thin layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well resolved in situ MFTIRs spectra, by which a chemical interaction between CC bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.展开更多
The difference in the electrochemical behavior of hydroquinone and pyrocatechol at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The...The difference in the electrochemical behavior of hydroquinone and pyrocatechol at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and electron transfer of redox species.展开更多
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality...The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.展开更多
The age-hardening behavior and precipitation evolution of an isothermal aged Mg-5Sm-0.6Zn-0.5Zr(wt.%) alloy have been systematically investigated by means of transmission electron microscopy(TEM) and atomic-resolution...The age-hardening behavior and precipitation evolution of an isothermal aged Mg-5Sm-0.6Zn-0.5Zr(wt.%) alloy have been systematically investigated by means of transmission electron microscopy(TEM) and atomic-resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM). The Vickers hardness of the present alloy increases first and then decreases with ageing time. The sample aged at 200 ℃ for 10 h exhibits a peak-hardness of 90.5 HV. In addition to the dominant β_(0)’ precipitate(orthorhombic,a = 0.642 nm, b = 3.336 nm and c = 0.521 nm) formed on {11-20}α planes, a certain number of γ’’ precipitate(hexagonal, a = 0.556 nm and c = 0.431 nm) formed on basal planes are also observed in the peak-aged alloy. Significantly, the basal γ’’ precipitate is more thermostable than prismatic β_(0)’ precipitate in the present alloy. β_(0)’ precipitates gradually coarsened and were even likely to transform into β_(1) phase(face centered cubic, a = 0.73 nm) with the increase of ageing time, which accordingly led to a gradual decrease in number density of precipitates and finally resulted in the decreased hardness and mechanical property in the over-aged alloys.展开更多
CO impurity-induced catalyst deactivation has long been one of the biggest challenges in proton-exchange membrane fuel cells,with the poisoning phenomenon mainly attributed to the overly strong adsorption on the catal...CO impurity-induced catalyst deactivation has long been one of the biggest challenges in proton-exchange membrane fuel cells,with the poisoning phenomenon mainly attributed to the overly strong adsorption on the catalytic site.Here,we present a mechanistic study that overturns this understanding by using Rh-based single-atom catalysis centers as model catalysts.We precisely modulated the chelation structure of the Rh catalyst by coordinating Rh with C or N atoms,and probed the reaction mechanism by surface-enhanced Raman spectroscopy.Direct spectroscopic evidence for intermediates indicates that the reactivity of adsorbed OH^(*),rather than the adsorption strength of CO^(*),dictates the CO electrocatalytic oxidation behavior.The RhN_(4)sites,which adsorb the OH^(*)intermediate more weakly than RhC4 sites,showed prominent CO oxidation activity that not only far exceeded the traditional Pt/C but also the RhC4 sites with similar CO adsorption strength.From this study,it is clear that a paradigm shift in future research should be considered to rationally design high-performance CO electro-oxidation reaction catalysts by sufficiently considering the water-related reaction intermediate during catalysis.展开更多
The electrochemistry of di-μ-oxo-dimanganese complex was investigated. It was found that no redox peak was observed in the cyclic voltammogram (CV) of the complex at the bare gold electrode, but at thiouracil-modifie...The electrochemistry of di-μ-oxo-dimanganese complex was investigated. It was found that no redox peak was observed in the cyclic voltammogram (CV) of the complex at the bare gold electrode, but at thiouracil-modified gold electrode, a pair of redox peaks were observed showing that thiouracil can promote the proton-coupled electron transfer reaction of the complex.展开更多
The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis ...The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.展开更多
Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidatio...Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.展开更多
Safe and efficient drug delivery to the inner ear has always been the focus of prevention and treatment of sensorineural deafness.The rapid development of nanodrug delivery systems based on hydrogel has provided a new...Safe and efficient drug delivery to the inner ear has always been the focus of prevention and treatment of sensorineural deafness.The rapid development of nanodrug delivery systems based on hydrogel has provided a new opportunity.Among them,thermo-sensitive hydrogels promote the development of new dosage form for intratympanic injection.This smart biomaterial could transform to semisolid phase when the temperature increased.Thermo-sensitive hydrogel nanodrug delivery system is expected to achieve safe,efficient,and sustained inner ear drug administration.This article introduces the key techniques and the latest progress in this field.展开更多
Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow t...Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers,the photovoltaic efficiencies usually drops in the resulting OSCs.Herein,a high photovoltaic efficiency of 15.03%and a large crack-onset strain of 15.70%is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PM6),non-fullerene accepter 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(Y6),and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene(SEBS)through the control of phase separation and crystallization.By employing a high-boiling point solvent additive 1-chloronaphthalene(CN)with different solubilities for PM6 and Y6,the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered,allowing for the different molecular rearrangement and liquid-liquid phase separation evolution.Consequently,the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6,enabling effective mechanical deformation and charge generation/transport.The revealed corrections between the film-formation process,film microstructure,and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs.展开更多
Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the...Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the harmful consequences.Addiction affects various neurotransmitter systems,including dopamine,serotonin,γ-aminobutyric acid(GABA),and glutamate,each of which plays a role in the reward,stress,and self-control pathways of the brain(Koob&Volkow,2016).While significant advances have been made in neuroscience,our understanding of how these neurotransmitter systems interact and contribute to addiction is still evolving.This knowledge gap represents a significant challenge in the formulation of effective treatments for SUDs.At present,the US Food and Drug Administration(FDA)has approved pharmacological treatments for alcohol,nicotine,and opioid use disorders(Vasiliu,2022);however,no such treatments have been authorized for SUDs in general,or specifically for stimulant use disorders,such as cocaine and methamphetamine addiction.Notably,the FDA has not approved any new drugs for SUD treatment in the past 40 years.展开更多
Drug addiction refers to a state of dependence that arises from habitual drug intake and can result in specific withdrawal symptoms upon cessation.The most commonly abused substances include psychostimulants,cannabino...Drug addiction refers to a state of dependence that arises from habitual drug intake and can result in specific withdrawal symptoms upon cessation.The most commonly abused substances include psychostimulants,cannabinoids,and opioids.When drugs are consumed,they stimulate the release of dopamine,a neurotransmitter crucial for the pleasure and reward centers of the brain.With repeated drug use,the brain undergoes various changes,leading to tolerance,dependence,and addiction(Lüscher et al.,2020).The mechanisms involved in drug addiction are highly complex and involve diverse cell types within the brain.展开更多
基金the financial support from the NCN,Poland,UMO-2020/39/B/ST8/02937 and NAWA,2020 PPN/BEK/2020/1/00129/ZAS/00001support from the Institute for Basic Science(IBS-R019-D1)。
文摘It is of great scientific and economic value to recycle waste poly(ethylene terephthalate)(PET)into high-value PET-based metal organic frameworks(MOFs)and further convert it into porous carbon for green energy storage applications.In the present study,a facile and costeffective hydrothermal process was developed to direct recycle waste PET bottles into MIL-53(Al)with a 100% conversation,then the MOFderived porous carbon was assembled into electrodes for high-performance supercapacitors.The results indicated that the as-synthesized carbon exhibited high SSA of 1712 m^(2)g^(-1)and unique accordion-like structure with hierarchical porosity.Benefit to these advantageous characters,the assembled three-electrode supercapacitor displayed high specific capacitances of 391 F g^(-1)at the current density of 0.5 A g^(-1)and good rate capability of 73.6% capacitance retention at 20 A g^(-1)in 6 mol L^(-1)KOH electrolyte.Furthermore,the assembled zinc ion capacitor still revealed outstanding capacitance of 335 F g^(-1)at 0.1 A g^(-1),excellent cycling stability of 92.2% capacitance retention after 10000 cycles and ultra-high energy density of 150.3 Wh kg^(-1)at power density of 90 W kg^(-1)in 3 mol L^(-1)ZnSO_(4)electrolyte.It is believed that the current work provides a facile and effective strategy to recycle PET waste into high-valuable MOF,and further expands the applications of MOF-derived carbons for high-performance energy storage devices,so it is conducive to both pollution alleviation and sustainable economic development.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(No.22178197)。
文摘Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products.
基金supported by the National Key R&D Program of China(2022YFA2105900)the National Natural Science Foundation of China(22178197)。
文摘Highly-efficient oxidation of 5-hydroxymethylfurtural(HMF) to 2,5-furandicarboxylic acid(FDCA) at low temperature with air as the oxidant is still challenging.Herein,inspired by the respirato ry electron transport chain(ETC) of living cells mediated by electron carriers,we constructed artificial ETCs and transformed liquid flow fuel cells(LFFCs) to flexible reactors for efficient oxidation of HMF to produce FDCA under mild conditions.This LFFC reactor employed an electrodeposition modified nickel foam as an anode to promote HMF oxidation and(VO_(2))_(2)SO_(4) as a cathode electron carrier to facilitate the electron transfer to air.The reaction rate could be easily controlled by selecting the anode catalyst,adjusting the external loading and changing the cathodic electron carrier or oxidants.A maximal power density of 44.9 mW cm^(-2) at room temperature was achieved,while for FDCA production,short-circuit condition was preferred to achieve quick transfer of electrons.For a single batch operation with 0.1 M initial HMF,FDCA yield reached 97.1%.By fed-batch operation,FDCA concentration reached 144.5 g L^(-1) with a total yield of 96%.Ni^(2+)/Ni^(3+) redox couple was the active species mediating the electron transfer,while both experimental and DFT calculation results indicated that HMFCA pathway was the preferred reaction mechanism.
基金financially supported by the Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS185)the National Natural Science Foundation of China(21975250)。
文摘Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.
基金supported by the National Natural Science Foundation of China(Nos.21905041,22279014)Jilin Province Major Science and Technology special project(Nos.20220301004GX+4 种基金20220301005GX)R&D Program of Power Batteries with Low Temperature and High Energy,Science and Technology Bureau of Changchun(No.19SS013)Key Subject Construction of Physical Chemistry of Northeast Normal UniversitySpecial foundation of Jilin Province Industrial Technology Research and Development(No.2019C042)the Fundamental Research Funds for the Central Universities(No.2412020FZ008)
文摘High Li^(+)transference number electrolytes have long been understood to provide attractive candidates for realizing uniform deposition of Li^(+).However,such electrolytes with immobilized anions would result in incomplete solid electrolyte interphase(SEI)formation on the Li anode because it suffers from the absence of appropriate inorganic components entirely derived from anions decomposition.Herein,a boron-rich hexagonal polymer structured all-solid-state polymer electrolyte(BSPE+10%LiBOB)with regulated intermolecular interaction is proposed to trade off a high Li^(+)transference number against stable SEI properties.The Li^(+)transference number of the as-prepared electrolyte is increased from 0.23 to 0.83 owing to the boron-rich cross-linker(BC)addition.More intriguingly,for the first time,the experiments combined with theoretical calculation results reveal that BOB^(-)anions have stronger interaction with B atoms in polymer chain than TFSI^(-),which significantly induce the TFSI^(-)decomposition and consequently increase the amount of LiF and Li3N in the SEI layer.Eventually,a LiFePO_(4)|BSPE+10%LiBOBlLi cell retains 96.7%after 400 cycles while the cell without BC-resisted electrolyte only retains 40.8%.BSPE+10%LiBOB also facilitates stable electrochemical cycling of solid-state Li-S cells.This study blazes a new trail in controlling the Li^(+)transport ability and SEI properties,synergistically.
基金support from the National Key R&D Program of China(Grant No.2023YFE0202000)National Natural Science Foundation of China(Grant No.52102213)Science Technology Program of Jilin Province(Grant No.20230101128JC).
文摘KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites.
基金National Natural Science Foundation of China for Exploring Key Scientific Instrument(No.41827805)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization(No.RERU2021017)Hainan Province Science and Technology Special Fund(ZDYF2021GXJS210)for providing support。
文摘The microstructure and precipitated phases of as-cast Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were investigated by optical microscopy,scanning electron microscopy,energy-dispersive spectrometry and X-ray Diffraction.The exposure corrosion experiment of these magnesium alloys was tested in South China Sea and KEXUE vessel atmospheric environment.The corrosion characteristic and mechanism of magnesium alloys of Mg-5Y-1.5Nd-x Zn-0.5Zr(x=0,2,4,6 wt.%)alloys were analyzed by weight loss rate,corrosion depth,corrosion products and corrosion morphologies.The electrochemical corrosion tests were also measured in the natural seawater.The comprehensive results showed that Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy existed the best corrosion resistance whether in the marine atmospheric environment and natural seawater environment.That depended on the microstructure,type and distribution of precipitated phases in Mg-5Y-1.5Nd-4Zn-0.5Zr magnesium alloy.Sufficient quantity anodic precipitated phases in the microstructure of Mg-5Y-1.5Nd-4Zn-0.5Zr alloy played the key role in the corrosion resistance.
文摘In-situ microscopic FTIR spectroelectrochemical technique(MFTIRs) was applied to studying the electrochemical oxidation of ascorbic acid(AA) in poly(ethylene glycol)(PEG) paste at a 100 μm diameter Pt disk electrode. Using this technique, the catalytic ability of cobalt hexacyanoferrate(CoHCF) microcrystalline toward AA oxidation was also studied. It was found that the dispersed CoHCF powder in the PEG paste can generate well shaped thin layer cyclic voltammetric waves with the peak height proportional to the scan rate, corresponding to the Fe centered redox reactions. This oxidation step catalyzed the AA oxidation. Also, this pasted CoHCF powder generated well resolved in situ MFTIRs spectra, by which a chemical interaction between CC bond of AA ring and CoHCF lattice was revealed. A corresponding surface docking mechanism for the catalytic reaction has been proposed.
基金Supported by the National Natural Science Foundation of China(No. 20475053) and Department of Science and Technology ofJilin Province(No.20050102)
文摘The difference in the electrochemical behavior of hydroquinone and pyrocatechol at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and electron transfer of redox species.
基金support from the National Natural Science Foundation of China(No.22005147)Dr.You acknowledges the financial support from the National Key Research and Development Program of China(2021YFA1600800)+1 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003)the Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST),Ministry of Education(2021JYBKF03).
文摘The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
基金supported by the National Natural Science Foundation of China (Nos.52201120 and 52004100)the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (RERU2022013)the Fundamental Research Funds for the Central Universities,JLU。
文摘The age-hardening behavior and precipitation evolution of an isothermal aged Mg-5Sm-0.6Zn-0.5Zr(wt.%) alloy have been systematically investigated by means of transmission electron microscopy(TEM) and atomic-resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM). The Vickers hardness of the present alloy increases first and then decreases with ageing time. The sample aged at 200 ℃ for 10 h exhibits a peak-hardness of 90.5 HV. In addition to the dominant β_(0)’ precipitate(orthorhombic,a = 0.642 nm, b = 3.336 nm and c = 0.521 nm) formed on {11-20}α planes, a certain number of γ’’ precipitate(hexagonal, a = 0.556 nm and c = 0.431 nm) formed on basal planes are also observed in the peak-aged alloy. Significantly, the basal γ’’ precipitate is more thermostable than prismatic β_(0)’ precipitate in the present alloy. β_(0)’ precipitates gradually coarsened and were even likely to transform into β_(1) phase(face centered cubic, a = 0.73 nm) with the increase of ageing time, which accordingly led to a gradual decrease in number density of precipitates and finally resulted in the decreased hardness and mechanical property in the over-aged alloys.
基金Jilin Province Science and Technology Development Program,Grant/Award Numbers:20180101030JC,20190201270JC,20200201001JCNational Natural Science Foundation of China,Grant/Award Numbers:21633008,21673221,21875243,U1601211+1 种基金Research Innovation Fund,Grant/Award Number:DNL202010Special Funds for Guiding Local Scientific and Technological Development by the Central Government,Grant/Award Number:2020JH6/10500021。
文摘CO impurity-induced catalyst deactivation has long been one of the biggest challenges in proton-exchange membrane fuel cells,with the poisoning phenomenon mainly attributed to the overly strong adsorption on the catalytic site.Here,we present a mechanistic study that overturns this understanding by using Rh-based single-atom catalysis centers as model catalysts.We precisely modulated the chelation structure of the Rh catalyst by coordinating Rh with C or N atoms,and probed the reaction mechanism by surface-enhanced Raman spectroscopy.Direct spectroscopic evidence for intermediates indicates that the reactivity of adsorbed OH^(*),rather than the adsorption strength of CO^(*),dictates the CO electrocatalytic oxidation behavior.The RhN_(4)sites,which adsorb the OH^(*)intermediate more weakly than RhC4 sites,showed prominent CO oxidation activity that not only far exceeded the traditional Pt/C but also the RhC4 sites with similar CO adsorption strength.From this study,it is clear that a paradigm shift in future research should be considered to rationally design high-performance CO electro-oxidation reaction catalysts by sufficiently considering the water-related reaction intermediate during catalysis.
文摘The electrochemistry of di-μ-oxo-dimanganese complex was investigated. It was found that no redox peak was observed in the cyclic voltammogram (CV) of the complex at the bare gold electrode, but at thiouracil-modified gold electrode, a pair of redox peaks were observed showing that thiouracil can promote the proton-coupled electron transfer reaction of the complex.
基金supported by the National Natural Science Foundation of China(21875096)the Natural Science Foundation of Jiangxi Province,China(20181BCD40004,No.20224BAB213015)。
文摘The co-pyrolysis of natural gas and coal is a promising way for the production of acetylene due to its high efficiency for energy and hydrogen utilization.This work investigated the thermodynamics for the copyrolysis reaction of natural gas and coal using density functional theory.The favorable reaction conditions are presented in the form of phase diagrams.The calculation results show that the extra amount of methane may benefit the production of acetylene in the co-pyrolysis reaction,and the C/H ratio of 1:1,temperature around 3000 K and pressure at 0.1 MPa are most favorable.The results would provide basic data for related industrial process for the production of acetylene.
基金supported by the National Natural Science Foundation of China(No.2187817622178197)。
文摘Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group.
基金supported by the national key R&D program(2022YFC2402703).
文摘Safe and efficient drug delivery to the inner ear has always been the focus of prevention and treatment of sensorineural deafness.The rapid development of nanodrug delivery systems based on hydrogel has provided a new opportunity.Among them,thermo-sensitive hydrogels promote the development of new dosage form for intratympanic injection.This smart biomaterial could transform to semisolid phase when the temperature increased.Thermo-sensitive hydrogel nanodrug delivery system is expected to achieve safe,efficient,and sustained inner ear drug administration.This article introduces the key techniques and the latest progress in this field.
基金supported by the National Natural Science Foundation of China(51873204 and 51933010)the 111 Project(B21005)+3 种基金the National 1000-talent-plan program(1110010341)the Science and Technology Program of Shaanxi Province(2021KJXX-13)the Fundamental Research Funds for the Central Universities(GK202103104)supported by Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,and Chinese Academy of Sciences.
文摘Stretchable organic solar cells(OSCs)have great potential as power sources for the next-generation wearable electronics.Although blending rigid photovoltaic components with soft insulating materials can easily endow the mechanical ductility of active layers,the photovoltaic efficiencies usually drops in the resulting OSCs.Herein,a high photovoltaic efficiency of 15.03%and a large crack-onset strain of 15.70%is simultaneously achieved based on a ternary blend consisting of polymer donor poly[(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))](PM6),non-fullerene accepter 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2",3":4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(Y6),and soft elastomer polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene(SEBS)through the control of phase separation and crystallization.By employing a high-boiling point solvent additive 1-chloronaphthalene(CN)with different solubilities for PM6 and Y6,the aggregation dynamics of PM6 and Y6 as well as the film solidification process are dramatically altered,allowing for the different molecular rearrangement and liquid-liquid phase separation evolution.Consequently,the ternary film with optimal CN content presents decreased SEBS domains and moderately improved molecular ordering of PM6 and Y6,enabling effective mechanical deformation and charge generation/transport.The revealed corrections between the film-formation process,film microstructure,and photovoltaic/mechanical characteristics in the ternary blend provide deep understanding of the morphology control toward high-performance stretchable OSCs.
基金supported by the National Science Foundation of China(T2350008,T2341003,22207103)STI2030-Major Projects(2021ZD0203000(2021ZD0203003))。
文摘Substance use disorders(SUDs)impact an estimated 300 million people worldwide,significantly impairing both health and social functioning.These disorders are marked by an inability to regulate substance use,despite the harmful consequences.Addiction affects various neurotransmitter systems,including dopamine,serotonin,γ-aminobutyric acid(GABA),and glutamate,each of which plays a role in the reward,stress,and self-control pathways of the brain(Koob&Volkow,2016).While significant advances have been made in neuroscience,our understanding of how these neurotransmitter systems interact and contribute to addiction is still evolving.This knowledge gap represents a significant challenge in the formulation of effective treatments for SUDs.At present,the US Food and Drug Administration(FDA)has approved pharmacological treatments for alcohol,nicotine,and opioid use disorders(Vasiliu,2022);however,no such treatments have been authorized for SUDs in general,or specifically for stimulant use disorders,such as cocaine and methamphetamine addiction.Notably,the FDA has not approved any new drugs for SUD treatment in the past 40 years.
基金supported by the STI2030-Major Projects(2021ZD0203000(2021ZD0203003))National Science Foundation of China(22207105)+1 种基金Beijing National Laboratory for Molecular Sciences(BNLMS202108)Chinese Academy of Sciences Pioneer Hundred Talents Program。
文摘Drug addiction refers to a state of dependence that arises from habitual drug intake and can result in specific withdrawal symptoms upon cessation.The most commonly abused substances include psychostimulants,cannabinoids,and opioids.When drugs are consumed,they stimulate the release of dopamine,a neurotransmitter crucial for the pleasure and reward centers of the brain.With repeated drug use,the brain undergoes various changes,leading to tolerance,dependence,and addiction(Lüscher et al.,2020).The mechanisms involved in drug addiction are highly complex and involve diverse cell types within the brain.