期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Tuning energy output of PTFE/Al composite materials through gradient structure
1
作者 Yao-feng Mao Qian-qian He +3 位作者 Jian Wang Chuan-hao Xu Jun Wang Fu-de Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期134-142,共9页
As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In thi... As a typical energetic composite,polytetrafluoroethylene(PTFE)/aluminum(Al)has been widely applied in explosives,pyrotechnics,and propellants due to its ultra-high energy density and intense exothermic reaction.In this work,the radial gradient(RG)structure of PTFE/Al cylinders with three different PTFE morphologies(200 nm and 5μm particles and 5μm fiber)and content changes are prepared by 3D printing technology.The effect of radial gradient structure on the pressure output of PTFE/Al has been studied.Compared with the morphology change of PTFE,the change of component content in the gradient structure has an obvious effect on the pressure output of the PTFE/Al cylinder.Furthermore,the relationships of the morphology,content of PTFE and the combustion reaction of the PTFE/Al cylinder reveal that the cylinder shows a more complex flame propagation process than others.These results could provide a strategy to improve the combustion and pressure output of PTFE/Al. 展开更多
关键词 PTFE/Al composite Gradient structure Radial gradient Pressure output
下载PDF
Revealing Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles in oxygen/fluorine containing environments:A reactive molecular dynamics study meshing together experimental validation
2
作者 Gang Li Chuande Zhao +2 位作者 Qian Yu Fang Yang Jie Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期313-327,共15页
Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For inst... Improving the energy conversion efficiency in metallic fuel(e.g.,Al)combustion is always desirable but challenging,which often involves redox reactions of aluminum(Al)with various mixed oxidizing environments.For instance,Al-O reaction is the most common pathway to release limited energy while Al-F reaction has received much attentions to enhance Al combustion efficiency.However,microscopic understanding of the Al-O/Al-F reaction dynamics remains unsolved,which is fundamentally necessary to further improve Al combustion efficiency.In this work,for the first time,Al-O/Al-F reaction dynamic effects on the combustion of aluminum nanoparticles(n-Al)in oxygen/fluorine containing environments have been revealed via reactive molecular dynamics(RMD)simulations meshing together combustion experiments.Three RMD simulation systems of Al core/O_(2)/HF,n-Al/O_(2)/HF,and n-Al/O_(2)/CF4 with oxygen percentage ranging from 0%to 100%have been performed.The n-Al combustion in mixed O_(2)/CF_4 environments have been conducted by constant volume combustion experiments.RMD results show that Al-O reaction exhibits kinetic benefits while Al-F reaction owns thermodynamic benefits for n-Al combustion.In n-Al/O_(2)/HF,Al-O reaction gives faster energy release rate than Al-F reaction(1.1 times).The optimal energy release efficiency can be achieved with suitable oxygen percentage of 10%and 50%for n-Al/O_(2)/HF and n-Al/O_(2)/CF_4,respectively.In combustion experiments,90%of oxygen percentage can optimally enhance the peak pressure,pressurization rate and combustion heat.Importantly,Al-O reaction prefers to occur on the surface regions while Al-F reaction prefers to proceed in the interior regions of n-Al,confirming the kinetic/thermodynamic benefits of Al-O/Al-F reactions.The synergistic effect of Al-O/Al-F reaction for greatly enhancing n-Al combustion efficiency is demonstrated at atomicscale,which is beneficial for optimizing the combustion performance of metallic fuel. 展开更多
关键词 Al-O/Al—F reaction Kinetic benefits Thermodynamic benefits Molecular dynamics COMBUSTION
下载PDF
Construction of core@double-shell structured energetic composites with simultaneously enhanced thermal stability and safety performance
3
作者 Peng Wang Wen Qian +6 位作者 Ruolei Zhong Fangfang He Xin Li Jie Chen Li Meng Yinshuang Sun Guansong He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期134-142,共9页
The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricat... The poor thermal stability and high sensitivity severely hinder the practical application of hexanitrohexaazaisowurtzitane(CL-20).Herein,a kind of novel core@double-shell CL-20 based energetic composites were fabricated to address the above issues.The coordination complexes which consist of natural polyphenol tannic acid(TA) and Fe~Ⅲ were chosen to construct the inner shell,while the graphene sheets were used to build the outer shell.The resulting CL-20/TA-Fe~Ⅲ/graphene composites exhibited simultaneously improved thermal stability and safety performance with only 1 wt% double-shell content,which should be ascribed to the intense physical encapsulation effect from inner shell combined with the desensitization effect of carbon nano-materials from outer shell.The phase transition(ε to γ) temperature increased from 173.70 ℃ of pure CL-20 to 191.87℃ of CL-20/TA-Fe~Ⅲ/graphene composites.Meanwhile,the characteristic drop height(H_(50)) dramatically increased from 14.7 cm of pure CL-20 to112.8 cm of CL-20/TA-Fe~Ⅲ/graphene composites,indicating much superior safety performance after the construction of the double-shell structure.In general,this work has provided an effective and versatile strategy to conquer the thermal stability and safety issues of CL-20 and contributes to the future application of high energy density energetic materials. 展开更多
关键词 CL-20 Double-shell structure Thermal stability Safety performance Tannic acid Graphene sheets
下载PDF
Construct a 3D microsphere of HMX/B/Al/PTFE to obtain the high energy and combustion reactivity
4
作者 Jian Wang Jie Chen +4 位作者 Yaofeng Mao Yongjun Deng Wei Cao Fude Nie Jun Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期45-54,共10页
Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficien... Metal(aluminum and boron)based energetic materials have been wildly applied in various fields including aerospace,explosives and micro-devices due to their high energy density.Unfortunately,the low combustion efficiency and reactivity of metal fuels,especially boron(B),severely limit their practical applications.Herein,multi-component 3D microspheres of HMX/B/Al/PTFE(HBA)have been designed and successfully prepared by emulsion and solvent evaporation method to achieve superior energy and combustion reactivity.The reactivity and energy output of HBA are systematically measured by ignitionburning test,constant-volume explosion vessel system and bomb calorimetry.Due to the increased interfacial contact and reaction area,HBA shows higher flame propagation rate,faster pressurization rate and larger combustion heat of 29.95 cm/s,1077 kPa/s,and 6164.43 J/g,which is 1.5 times,3.5 times,and 1.03 times of the physical mixed counterpart(HBA-P).Meanwhile,HBA also shows enhanced energy output and reactivity than 3D microspheres of HMX/B/PTFE(HB)resulting from the high reactivity of Al.The reaction mechanism of 3D microspheres is comprehensively investigated through combustion emission spectral and thermal analysis(TG-DSC-MS).The superior reactivity and energy of HBA originate from the surface etching of fluorine to the inert shell(Al_(2)O_(3) and B_(2)O_(3))and the initiation effect of Al to B.This work offers a promising approach to design and prepare high-performance energetic materials for the practical applications. 展开更多
关键词 HMX/B/Al/PTFE 3D microspheres Surface etching Reaction mechanism
下载PDF
Shock-induced energy localization and reaction growth considering chemical-inclusions effects for crystalline explosives
5
作者 Ruqin Liu Yanqing Wu +3 位作者 Xinjie Wang Fenglei Huang Xiaona Huang Yushi Wen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期278-294,共17页
Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall phy... Chemical inclusions significantly alter shock responses of crystalline explosives in macroscale gap experiments but their microscale dynamics origin remains unclear.Herein shock-induced energy localization,overall physical responses,and reactions in a-1,3,5-trinitro-1,3,5-triazinane(a-RDX)crystal entrained various chemical inclusions were investigated by the multi-scale shock technique implemented in the reactive molecular dynamics method.Results indicated that energy localization and shock reaction were affected by the intrinsic factors within chemical inclusions,i.e.,phase states,chemical compositions,and concentrations.The atomic origin of chemical-inclusions effects on energy localization is dependent on the dynamics mechanism of interfacial molecules with free space volume,which includes homogeneous intermolecular compression,interfacial impact and shear,and void collapse and jet.As introducing various chemical inclusions,the initiation of those dynamics mechanisms triggers diverse decay rates of bulk RDX molecules and hereby impacts on growth speeds of final reactions.Adding chemical inclusions can reduce the effectiveness of the void during the shock impacting.Under the shockwave velocity of 9 km/s,the parent RDX decay rate in RDX entrained amorphous carbon decreases the most and is about one fourth of that in RDX with a vacuum void,and solid HMX and TATB inclusions are more reactive than amorphous carbon but less reactive than dry air or acetone inclusions.The lessdense shocking system denotes the greater increases in local temperature and stress,the faster energy liberation,and the earlier final reaction into equilibrium,revealing more pronounced responses to the present intense shockwave.The quantitative models associated with the relative system density(RD_(sys))were proposed for indicating energy-localization mechanisms and evaluating initiation safety in the shocked crystalline explosive.RD_(sys)is defined by the density ratio of defective RDX to perfect crystal after dynamics relaxation and reveals the global density characteristic in shocked systems filled with chemical inclusions.When RD_(sys)is below 0.9,local hydrodynamic jet initiated by void collapse dominates upon energy localization instead of interfacial impact.This study sheds light on novel insights for understanding the shock chemistry and physical-based atomic origin in crystalline explosives considering chemical-inclusions effects. 展开更多
关键词 Shock responses Energy localization Crystalline explosives Chemical inclusions Reactive molecular dynamics
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
6
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry STRUCTURE SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials 被引量:3
7
作者 Siwei Song Yi Wang +2 位作者 Fang Chen Mi Yan Qinghua Zhang 《Engineering》 SCIE EI 2022年第3期99-109,共11页
Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and... Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error.Herein,a methodology combining domain knowledge,a machine learning algorithm,and experiments is presented for accelerating the discovery of novel energetic materials.A high-throughput virtual screening(HTVS)system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established.With the proposed HTVS system,candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25112 molecules.Furthermore,a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results,thus verifying the effectiveness of the proposed methodology.This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles. 展开更多
关键词 Energetic materials Machine learning High-throughput virtual screening Molecular properties Synthesis
下载PDF
Deflagration to detonation transition in weakly confined conditions for a type of potentially novel green primary explosive:Al/Fe_(2)O_(3)/RDX hybrid nanocomposites 被引量:1
8
作者 Qing-ping Luo Xin-ping Long +2 位作者 Fu-de Nie Gui-xiang Liu Chao Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期28-36,共9页
The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined condit... The properties of the combustion and deflagration to detonation transition(DDT)of Al/Fe_(2)O_(3)/RDX hybrid nanocomposites,a type of potentially novel lead-free primary explosives,were tested in weakly confined conditions,and the interaction of Al/Fe_(2)O_(3)nanothermite and RDX in the DDT process was studied in detail.Results show that the amount of the Al/Fe_(2)O_(3)nanothermite has a great effect on the DDT properties of Al/Fe_(2)O_(3)/RDX nanocomposites.The addition of Al/Fe_(2)O_(3)nanothermite to RDX apparently improves the firing properties of RDX.A small amount of Al/Fe_(2)O_(3)nanothermite greatly increases the initial combustion velocity of Al/Fe_(2)O_(3)/RDX nanocomposites,accelerating their DDT process.When the contents of Al/Fe_(2)O_(3)nanothermite are less than 20 wt%,the DDT mechanisms of Al/Fe_(2)O_(3)/RDX nanocomposites follow the distinct abrupt mode,and are consistent with that of RDX,though their DDT processes are different.The RDX added into the Al/Fe_(2)O_(3)nanothermite increases the latter's peak combustion velocity and makes it generate the DDT when the RDX content is at least 10 wt%.RDX plays a key role in the shock compressive combustion,the formation and the properties of the DDT in the flame propagation of nanocomposites.Compared with RDX,the fast DDT of Al/Fe_(2)O_(3)/RDX nanocomposites could be obtained by adjusting the chemical constituents of nanocomposites. 展开更多
关键词 Green primary explosives Al/Fe_(2)O_(3)/RDX nanocomposites Deflagration to detonation transition Mechanism
下载PDF
Modulating J-V hysteresis of planar perovskite solar cells and mini-modules via work function engineering
9
作者 Zenghua Wang Bing Cai +2 位作者 Deyu Xin Min Zhang Xiaojia Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期19-29,I0003,共12页
Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in wor... Commercialization of perovskite solar cells(PSCs) requires the development of high-efficiency devices with none current density-voltage(J-V) hysteresis. Here, electron transport layers(ETLs) with gradual change in work function(WF) are successfully fabricated and employed as an ideal model to investigate the energy barriers, charge transfer and recombination kinetics at ETL/perovskite interface. The energy barrier for electron injection existing at ETL/perovskite is directly assessed by surface photovoltage microscopy, and the results demonstrate the tunable barriers have significant impact on the J-V hysteresis and performance of PSCs. By work function engineering of ETL, PSCs exhibit PCEs over 21% with negligible hysteresis. These results provide a critical understanding of the origin reason for hysteresis effect in planar PSCs, and clear reveal that the J-V hysteresis can be effectively suppressed by carefully tuning the interface features in PSCs. By extending this strategy to a modified formamidinium-cesium-rubidium(FA-Cs-Rb) perovskite system, the PCEs are further boosted to 24.18%. Moreover, 5 cm × 5 cm perovskite mini-modules are also fabricated with an impressive efficiency of 20.07%, demonstrating compatibility and effectiveness of our strategy on upscaled devices. 展开更多
关键词 J-V hysteresis Work function Planar perovskite solar cells Energy barriers Charge transfer kinetics Perovskite solar modules
下载PDF
Nacre-inspired interface structure design of polymer bonded explosives toward significantly enhanced mechanical performance
10
作者 Peng Wang You-long Chen +6 位作者 Li Meng Yin-shuang Sun Yu Dai Xin Li Jie Chen Zhi-jian Yang Guan-song He 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第9期83-92,共10页
Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs)... Realizing effective enhancement to the structure of interface region between explosive crystals and polymer binder plays a key role in improving the mechanical properties of the current polymer bonded explosives(PBXs).Herein,inspired by the structure of natural nacre which possesses outstanding mechanical performance,a kind of nacre-like structural layer is constructed in the interface region of PBXs composites,making use of two-dimensional graphene sheets and one-dimensional bio-macromolecules of cellulose as inorganic and organic building blocks,respectively.Our results reveal that the constructed nacre-like structural layer can effectively improve the interfacial strength and then endow the PBXs composites with significantly enhanced mechanical properties involving of creep resistance,Brazilian strength and fracture toughness,demonstrating the obvious advantage of such bioinspired interface structure design strategy.In addition,the thermal conduction performance of PBXs composites also exhibits noticeable enhancement due to the remarkable phonon transport capability endowed by the asdesigned nacre-like structural layer.We believe this work provides a novel design route to conquer the issue of weak interfacial strength in PBXs composites and greatly increase the comprehensive properties for better meeting the higher requirements proposed to the explosive part of weapon equipment in new era. 展开更多
关键词 Polymer bonded explosives Nacre-like structural layer GRAPHENE CELLULOSE Mechanical properties
下载PDF
Benchmark calculations and error cancelations for bond dissociation enthalpies of X-NO_(2)
11
作者 Jian Liu Xudong He +2 位作者 Ying Xiong Fude Nie Chaoyang Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期144-155,共12页
Safety plays an important role in determining the applicability of energetic compounds,and the bond dissociation enthalpy(BDE)of the“trigger bond”X-NO_(2) provides useful information to evaluate various safety prope... Safety plays an important role in determining the applicability of energetic compounds,and the bond dissociation enthalpy(BDE)of the“trigger bond”X-NO_(2) provides useful information to evaluate various safety properties.Accurate and rapid calculation of the BDE of X-NO_(2) is of great significance to perform the high-throughput design of energetic compounds,which becomes an increasingly popular means of materials design.We conduct a benchmark BDE calculation for 44 X-NO_(2) samples extracted from the iBond database,with the accuracies of 55 quantum chemistry calculation levels evaluated by the experimentally measured values.Only four levels have the global mean-absolute deviation(MAD)less than 10 kJ/mol,but no calculation level can achieve that all the local MADs of each category less than 10 kJ/mol.We propose a simple correction strategy for the original calculation deviations,and apply it to 30 calculation levels screened out through a series of accuracy assessments and obtain the corrected MAD<6 kJ/mol in some cases.We define a normalized time-cost(NTC)to evaluate the time-cost of each calculation level,and confirm that PBE0-D3/6-31G^(**)(MAD=6.4 kJ/mol,NTC?0.8)works the best for most cases,followed by M062X/6-31g^(**),M062X/6-311g^(**)andɷB97XD/6-311g^(**),based on an insight into the accuracy-cost trade.The present work provides an accurate and fast solution for calculating XNO_(2) BDE via quantum chemical methods,and is expected to be beneficial to enhance the safety prediction efficiency of energetic compounds. 展开更多
关键词 Complex waveform scaling Analytical blast modeling Hopkinson-Cranz Scaled distance
下载PDF
Fabrication of alginate-based microspheres with cellular structure for tuning ammonium dinitramide performance
12
作者 Dun-ju Wang Xu Zhou +4 位作者 Yao-feng Mao Xin Wang Ye-ming Huang Rui-hao Wang Da-wei Zheng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期111-120,共10页
Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It c... Recently,an emerging category green of energetic material ammonium dinitramide(ADN)has exhibited promising application in propellants due to its outstanding merits in energy release and environmental friendliness.It can be considered to substitute traditional oxidizer of ammonium perchlorate(AP)in military systems and aerospace.In this paper,a novel spherical energetic composite ADN/copper alginate(CA)with a microporous structure was designed and prepared by the W/O gel emulsion method,and a desirable porous microsphere structure was obtained.Multiple characterization techniques were used to investigate the structure and properties of ADN/CA composites.The results showed that ADN crystals were homogeneously encapsulated in an alginate-gel matrix.Thermal decomposition temperature was reduced to 151.7℃compared to ADN,while the activation energy of them was reduced from 129.73 k J/mol(ADN)to 107.50 k J/mol(ADN/CA-4).In addition,as-prepared samples had lower impact and frictional sensitivity than ADN.The mechanism of sensitivity reduction and decomposition are also discussed.Constant-volume combustion tests show that peak pressure of the ADN/CA-4 achieves 253.4 k Pa and pressurization rate of 2750.4 k Pa/s.Hence,this has a promising application in improving the combustion performance and safety performance of solid propellants. 展开更多
关键词 Ammonium dinitramide Sodium alginate MICROSPHERES High reactivity Energetic materials
下载PDF
Toward high-efficiency perovskite solar cells with one-dimensional oriented nanostructured electron transport materials
13
作者 Yinhua Lv Bing Cai +3 位作者 Ruihan Yuan Yihui Wu Quinn Qiao Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期66-87,I0003,共23页
The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs)... The unique advantages of one-dimensional(1D)oriented nanostructures in light-trapping and chargetransport make them competitive candidates in photovoltaic(PV)devices.Since the emergence of perovskite solar cells(PSCs),1D nanostructured electron transport materials(ETMs)have drawn tremendous interest.However,the power conversion efficiencies(PCEs)of these devices have always significantly lagged behind their mesoscopic and planar counterparts.High-efficiency PSCs with 1D ETMs showing efficiency over 22%were just realized in the most recent studies.It yet lacks a comprehensive review covering the development of 1D ETMs and their application in PSCs.We hence timely summarize the advances in 1D ETMs-based solar cells,emphasizing on the fundamental and optimization issues of charge separation and collection ability,and their influence on PV performance.After sketching the classification and requirements for high-efficiency 1D nanostructured solar cells,we highlight the applicability of 1D TiO_(2)nanostructures in PSCs,including nanotubes,nanorods,nanocones,and nanopyramids,and carefully analyze how the electrostatic field affects cell performance.Other kinds of oriented nanostructures,e.g.,ZnO and SnO_(2)ETMs,are also described.Finally,we discuss the challenges and propose some potential strategies to further boost device performance.This review provides a broad range of valuable work in this fast-developing field,which we hope will stimulate research enthusiasm to push PSCs to an unprecedented level. 展开更多
关键词 1D nanostructures Perovskite solar cells Electron transport materials Electrostatic field High-efficiency
下载PDF
Tetris-Style Stacking Process to Tailor the Orientation of Carbon Fiber Scaffolds for Efficient Heat Dissipation
14
作者 Shida Han Yuan Ji +4 位作者 Qi Zhang Hong Wu Shaoyun Guo Jianhui Qiu Fengshun Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期310-324,共15页
As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the hea... As the miniaturization of electronic devices and complication of electronic packaging,there are growing demands for thermal interfacial materials with enhanced thermal conductivity and the capability to direct the heat toward heat sink for highly efficient heat dissipation.Pitch-based carbon fiber(CF)with ultrahigh axial thermal conductivity and aspect ratios exhibits great potential for developing thermally conductive composites as TIMs.However,it is still hard to fabricate composites with aligned carbon fiber in a general approach to fully utilize its excellent axial thermal conductivity in specific direction.Here,three types of CF scaffolds with different oriented structure were developed via magnetic field-assisted Tetris-style stacking and carbonization process.By regulating the magnetic field direction and initial stacking density,the self-supporting CF scaffolds with horizontally aligned(HCS),diagonally aligned and vertically aligned(VCS)fibers were constructed.After embedding the polydimethylsiloxane(PDMS),the three composites exhibited unique heat transfer properties,and the HCS/PDMS and VCS/PDMS composites presented a high thermal conductivity of 42.18 and 45.01 W m^(−1)K^(−1)in fiber alignment direction,respectively,which were about 209 and 224 times higher than that of PDMS.The excellent thermal conductivity is mainly ascribed that the oriented CF scaffolds construct effective phonon transport pathway in the matrix.In addition,fishbone-shaped CF scaffold was also produced by multiple stacking and carbonization process,and the prepared composites exhibited a controlled heat transfer path,which can allow more versatility in the design of thermal management system. 展开更多
关键词 Carbon fiber Magnetic field Thermal management Thermally conductive composites
下载PDF
Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials
15
作者 Yuan Ji Shi-Da Han +3 位作者 Hong Wu Shao-Yun Guo Feng-Shun Zhang Jian-Hui Qiu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期352-363,I0008,共13页
Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected... Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications. 展开更多
关键词 Thermal interface materials Hexagonal boron nitride Thermal impedance SURFACES
原文传递
The effect of wax coating,aluminum and ammonium perchlorate on impact sensitivity of HMX 被引量:8
16
作者 Yu-bin LI Li-ping PAN +3 位作者 Zhi-jian YANG Fei-yan GONG Xue ZHENG Guan-song HE 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第6期422-427,共6页
Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapo... Interaction of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)/ammonium perchlorate(AP) and its effect on mechanical sensitivity may result in some restrictions for the application of AP/HMX system in high energetic weapon system. In this work, impact sensitivity test is used to study the effects of wax coating of HMX, AP and aluminum(Al) powder on sensitivity properties of HMX/AP/Al mixtures.Thermogravimetry-differential scanning calorimetry(TG-DSC) analysis has been developed to investigate the mechanism of interaction between HMX and AP during the course of thermal decomposition of HMX/AP/AI mixtures. The results show that severe interaction effect exists between AP and HMX, which causes the impact sensitivity(H_(50)) to become smaller. The impact energy(E_(50)) of mixture can be improved under the circumstances of effective separating HMX from AP by surface coating with Wax. AP may firstly engender low-temperature decomposition under the circumstance of external heat or mechanical impact, which causes the exothermic peak of HMX forward shift about 28 C. The gaseous product releasing from thermal decomposition of HMX accelerates further decomposition of AP. For HMX/AP composite system, the interactive catalysis effect between AP and HMX can be eliminated mostly by adding a great deal of Al powder(i.e. above 30%). 展开更多
关键词 Interaction HMX/AP/Al MIXTURES Impact sensitivity Thermal DECOMPOSITION
下载PDF
Investigation of methane adsorption on chlorite by grand canonical Monte Carlo simulations 被引量:7
17
作者 Jian Xiong Xiang-Jun Liu +1 位作者 Li-Xi Liang Qun Zeng 《Petroleum Science》 SCIE CAS CSCD 2017年第1期37-49,共13页
In this paper, the methane adsorption behaviours in slit-like chlorite nanopores were investigated using the grand canonical Monte Carlo simulation method, and the influences of the pore sizes, temperatures, water, an... In this paper, the methane adsorption behaviours in slit-like chlorite nanopores were investigated using the grand canonical Monte Carlo simulation method, and the influences of the pore sizes, temperatures, water, and compositions on methane adsorption on chlorite were discussed. Our investigation revealed that the isosteric heat of adsorption of methane in slit-like chlorite nanopores decreased with an increase in pore size and was less than 42 kJ/mol, suggesting that methane adsorbed on chlorite through physical adsorption. The methane excess adsorption capacity increased with the increase in the pore size in micropores and decreased with the increase in the pore size in mesopores. The methane excess adsorption capacity in chlorite pores increased with an increase in pressure or decrease in pore size. With an increase in temperature, the isosteric heats of adsorption of methane decreased and the methane adsorption sites on chlorite changed from lowerenergy adsorption sites to higher-energy sites, leading to the reduction in the methane excess adsorption capacity.Water molecules in chlorite pores occupied the pore wall in a directional manner, which may be related to the van der Waals and Coulomb force interactions and the hydrogen bonding interaction. It was also found that water molecules existed as aggregates. With increasing water content, the water molecules occupied the adsorption sites andadsorption space of the methane, leading to a reduction in the methane excess adsorption capacity. The excess adsorption capacity of gas on chlorite decreased in the following order: carbon dioxide [ methane [ nitrogen. If the mole fraction of nitrogen or carbon dioxide in the binary gas mixture increased, the mole fraction of methane decreased, methane adsorption sites changed, and methane adsorption space was reduced, resulting in the decrease in the methane excess adsorption capacity. 展开更多
关键词 蒙特卡罗模拟方法 甲烷吸附 吸附行为 绿泥石 氢键相互作用 孔隙压力 吸附位置 正则
下载PDF
Preparation and Adsorption Property of Phenyltriethoxysilane Modified SiO_2 Aerogel 被引量:5
18
作者 林本兰 崔升 +3 位作者 LIU Xueyong LIU Yu SHEN Xiaodong HAN Guifan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期916-920,共5页
The hydrophobic silica aerogel(SiO2 aerogel) was prepared by in situ polymerization sol-gel method and ethanol supercritical drying,with tetraethoxysilane(TEOS) as silica source,phenyltriethoxysilane(PTES) as modifier... The hydrophobic silica aerogel(SiO2 aerogel) was prepared by in situ polymerization sol-gel method and ethanol supercritical drying,with tetraethoxysilane(TEOS) as silica source,phenyltriethoxysilane(PTES) as modifier,ethanol as solvent and ammonia as catalyst.The effects of n(PTES)/n(TOES) were investigated on gel time,structure,and hydrophobicity.The SiO2 aerogel was measured by Fourier transform infrared spectroscopy(FT-IR) and scanning electron microscopy(SEM).The effects of n(PTES)/n(TOES) were also studied on adsorption property of pentane,hexane,heptane,octane,benzene,toluene,o-xylene,nitromethane,nitroethane,and nitrobenzene.The adsorption intensity of SiO2 aerogel was compared with that of activated carbon.The results show,with the increasing of n(PTES)/n(TOES),the surface area,pore volume,and pore size of SiO2 aerogel decreased,gel time and hydrophobicity increased,and the contact angle could be 154° with n(PTES)/n(TOES)=0.7.The adsorption intensity of SiO2 aerogel with n(PTES)/n(TOES)=0.5 was bigger than that of activated carbon with an average 5.84 times of 10 organic liquid.The adsorption intensity of aerogel with n(PTES)/n(TOES) =0.1 was the best one in all samples with the average 8.33 times compared with that of activated carbon. 展开更多
关键词 二氧化硅气凝胶 四乙氧基硅烷 吸附性能 硅烷改性 苯基 制备 傅里叶变换红外光谱 扫描电子显微镜
原文传递
Nanocrystals of halide perovskite:Synthesis,properties,and applications 被引量:4
19
作者 Chi Yang Yihui Wu +1 位作者 Qingshan Ma Wen-Hua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期622-636,共15页
Recently, halide perovskite materials have become an exciting topic of research mainly due to their outstanding photovoltaic performance with the highest efficiency up to 22.1% at present. The nanocrystals(NCs) of the... Recently, halide perovskite materials have become an exciting topic of research mainly due to their outstanding photovoltaic performance with the highest efficiency up to 22.1% at present. The nanocrystals(NCs) of these perovskites show quantum size effect, tunable bandgap, and excellent photoluminescence quantum yield(PLQY) in specific cases. Perovskite NCs have hence displayed great potentials in a broad range of applications, such as solar cells, light-emitting devices(LEDs), photodetectors, and lasers. In this review, we summarized the recent progress on the synthesis, optoelectronic properties and applications of the nanostructures of these halide perovskite materials, including hybrid organic–inorganic perovskites,pure inorganic perovskite, and perovskite-derived NCs. We have also provided a critical outlook into the challenges ahead. 展开更多
关键词 卤化物 应用 合成 性质 光电探测器 太阳能电池 表演 材料
下载PDF
Photoelectric detection technology of laser seeker signals 被引量:4
20
作者 ZHU Likun JIA Fangxiu +1 位作者 JIANG Xiaodong LI Xinglong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第6期1064-1073,共10页
The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, t... The measurement of the rolling angle of the projectile is one of the key technologies for the terminal correction projectile.To improve the resolution accuracy of the rolling angle in the laser seeker weapon system, the imaging model of the detector, calculation model of the position and the signal-to-noise ratio(SNR) model of the circuit are built to derive both the correlation between the resolution error of the rolling angle and the spot position, and the relation between the position resolution error and the SNR. Then the influence of each parameter on the SNR is analyzed at large,and the parameters of the circuit are determined. Meanwhile, the SNR and noise voltage of the circuit are calculated according to the SNR model and the decay model of the laser energy. Finally,the actual photoelectric detection circuit is built, whose SNR is measured to be up to 53 d B. It can fully meet the requirement of0.5° for the resolution error of the rolling angle, thereby realizing the analysis of critical technology for photoelectric detection of laser seeker signals. 展开更多
关键词 laser seeker rolling angle error of position signal-to noise ratio(SNR) photoelectric detection.
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部