Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them...Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.展开更多
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ...Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.展开更多
Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical pr...Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).展开更多
Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of cr...Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of critical challenges from the Se cathode side need to be overcome including low reactivity of bulk Se,shuttle effect of intermediates,sluggish redox kinetics of polyselenides,and volume change etc.In this review,recent progress on design strategies of functional Se cathodes are comprehensively summarized and discussed.Following the significance and key challenges,various efficient functionalized strategies for Se cathodes are presented,encompassing covalent bonding,nanostructure construction,heteroatom doping,component hybridization,and solid solution formation.Specially,the universality of these functional strategies are successfully extended into Na-Se batteries,K-Se batteries,and Mg-Se batteries.At last,a brief summary is made and some perspectives are offered with the goal of guiding future research advances and further exploration of these strategies.展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herei...Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.展开更多
Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issu...Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issue,1-butyl-3-methylimidazolium trifluoro-methane-sulfonate(BMIMOTF) and its iodide counterpart(BMIMI) are utilized to modify the perovskite surface respectively.We find that BMIMI can change the perovskite surface,whereas BMIMOTF shows a nondestructive and more effective defect passivation,giving significantly reduced defect density and suppressed charge-carrier nonradiative recombination.This mainly attributes to the marked passivation efficacy of OTF-anion on V_Ⅰ and undercoordinated Pb^(2+),rather than BMIMI^(+) cation.Benefiting from the rational surface-modification of BMMIMOTF,the films exhibit an optimized energy level alignment,enhanced hydrophobicity and suppressed ion migration.Consequently,the BMIMOTF-modified devices achieve an impressive efficiency of 21.38% with a record open-circuit voltage of 1.195 V,which is among the best efficiencies reported for 2D PVSCs,and display greatly enhanced humidity and thermal stability.展开更多
Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials an...Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.展开更多
Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and u...Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.展开更多
The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulat...The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.展开更多
Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a ch...Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.展开更多
The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self...The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.展开更多
There is an increasing interest in bismuth carbonate(Bi2O2CO3,BOC)as a semiconductor photocatalyst.However,pure BOC strongly absorbs ultraviolet light,which drives a high recombination rate of charge carriers and ther...There is an increasing interest in bismuth carbonate(Bi2O2CO3,BOC)as a semiconductor photocatalyst.However,pure BOC strongly absorbs ultraviolet light,which drives a high recombination rate of charge carriers and thereby limits the overall photocatalysis efficiency.In this work,artificial oxygen vacancies(OV)were introduced into BOC(OV-BOC)to broaden the optical absorption range,increase the charge separation efficiency,and activate the reactants.The photocatalytic removal ratio of NO was increased significantly from 10.0%for pure BOC to 50.2%for OV-BOC because of the multiple roles played by the oxygen vacancies.These results imply that oxygen vacancies can facilitate the electron exchange between intermediates and the surface oxygen vacancies in OV-BOC,making them more easily destroyed by active radicals.In situ DRIFTS spectra in combination with electron spin resonance spectra and density functional theory calculations enabled unraveling of the conversion pathway for the photocatalytic NO oxidation on OV-BOC.It was found that oxygen vacancies could increase the production of active radicals and promote the transformation of NO into target products instead of toxic byproducts(NO2),thus the selectivity is significantly enhanced.This work provides a new strategy for enhancing photocatalytic activity and selectivity.展开更多
To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2...To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2)with abundant SOVs exhibits efficient and stable performance for photocatalytic degradation of toluene under both low and high relative humidity.Experimental and theoretical calculations results show that the synergistic effects of Zn‐doping and SOVs on SnO_(2)can considerably boost the charge transfer and separation efficiency.Utilizing the in situ DRIFTS and theoretical calculations methods,it is revealed that the benzene ring of toluene is opened at benzoic acid on the SnO_(2)surface and selectively at benzaldehyde on the Zn‐doped SnO_(2)surface.This implies that Zn‐doped SnO_(2)photocatalysts shorten the pathway of toluene degradation,and toxic intermediates can be significantly inhibited.This work could provide a promising and sustainable route for safe and efficient removal of aromatic VOCs with photocatalytic technology.展开更多
With the rising global population,increasing energy demand and rapid climate change,great concems have been raised for environment and energy security in future.Solar-driven CO_(2) reduction provides a promising way t...With the rising global population,increasing energy demand and rapid climate change,great concems have been raised for environment and energy security in future.Solar-driven CO_(2) reduction provides a promising way to deal with energy crists and global warming,which has been widely concemed.Photoelectrocatalysis technology can effectively utilize solar energy and avoid to use high-temperature and high-voltage reduction environment by integrating the vantages of both photocatalysis and electrocatalysis,which exhibits a broad application prospect of CO_(2) reduction with a high efficiency and ecellent selectivity.In this review,basic pr inciples of CO_(2) reduction by photocatalysis,electrocatalysis and photoeletrocatalysis are briely reviewed,also comparing the technical character istics of the above technologies.Diferent photoelectrocatalyde systems for CO_(2) reduction are described and compared.The several key influencing factors of photoeletrocatalytic performance of CO_(2) reduction are discussed,including inter action between reaction molecules and catalysts,reaction conditions and influence of photoelectrode.Then,the advances on reaction mechanisms and strategies of perfor mance enhancement by opd:mizing photoexcitation,charge separation efficiency and surface reaction were reviewed.Besides,the chal-lenges and prospects of photoelectrocatalyde CO_(2) reduction will be also discussed.展开更多
Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepa...Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepare the Co-based derivatives from CoAl LDH and also short of an intuitive perspective to analyze the pseudocapacitance mechanism of CoAl LDH and its derivatives.Herein,Graphene/CoAl LDH and its derivatives including Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP were prepared by reasonably using alkali etching treatment,sulfofication and phosphorization.The specific capacitance of Graphene/CoAl LDH,Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP at1 A g^(-1) are 260.7,371.3,440.8,61.4 and 122.2 F g^(-1),especially.The pseudocapacitance mechanism of Graphene/CoAl LDH and its derivatives was analyzed.Due to the positive effect of sulfofication on the electrical conductivity of GO and cobalt sulfide,the Graphene/CoS and Graphene/CoS-1 exhibit the optimal electrochemical performance and superior rate capability.In addition,due to the repulsion effect between Graphene and OH-,the Graphene/CoAl LDH exhibits optimal cycling stability of 224.1% capacitance retention after 20000 cycles.Besides,the reason of terrible specific capacitance of Graphene/CoOOH is that the presence of H bond in interlayer of CoOOH inhibits the interaction between Co3+ and OHspecies.Hence,not all modifications will increase the specific capacitance of the electrode materials.Overall,this work provides us with a detailed analysis of the electrochemical mechanism and correlation of CoAl LDH and its derivatives from the perspective of crystal structure and composition.展开更多
Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid o...Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.展开更多
Charge separation and transformation are some of the key requirements for high-efficiency photocatalysis. The photocatalytic reaction mechanism provides a guideline for the development and commercialization of high-ef...Charge separation and transformation are some of the key requirements for high-efficiency photocatalysis. The photocatalytic reaction mechanism provides a guideline for the development and commercialization of high-efficiency photocatalysts. In this study, we designed and favorably synthesized BMO@BOC heterojunctions via a facile solvothermal route and applied the heat treatment method for application in high-efficiency photocatalytic NO removal. More importantly, both continuous stream and intermittent stream methods with in situ diffuse reflectance infrared Fourier transform spectroscopy were applied to intuitively and dynamically investigate the adsorption process and oxidation process of NO removal over the photocatalyst surface. The intermediate products(NO-, NO2-, and NO2) were explicitly detected in both the adsorption process and oxidation process, whilst the final product(NO3-) appeared only in the oxidation process, owing to the separation, migration, and conversion of photoinduced electron-hole pairs.展开更多
1.Introduction In the era of the new century,driven by the development of the intelligent society,the integration of the field of electronics and information with various technical fields and industries has accelerate...1.Introduction In the era of the new century,driven by the development of the intelligent society,the integration of the field of electronics and information with various technical fields and industries has accelerated and become the major driving force for a new round of technological revolution and industrial transformation.This has advanced the profound adjustment of global technology,industry,and division of labor as well as reshaping the innovation and competitiveness of countries around the world.Electronics information has received the most concentrated research and development investment worldwide and has been actively advancing and playing a leading role in dissemination.Naturally,it has become an important strategic area in which the world’s scientific and technological powers seek economic advances and competitive advantages.展开更多
The growth of γ-In_(2)Se_(3) thin films on mica by molecular beam epitaxy is studied. Single-crystalline γ-In_(2)Se_(3) is achieved at a relatively low growth temperature. An ultrathin β-In_(2)Se_(3) buffer layer i...The growth of γ-In_(2)Se_(3) thin films on mica by molecular beam epitaxy is studied. Single-crystalline γ-In_(2)Se_(3) is achieved at a relatively low growth temperature. An ultrathin β-In_(2)Se_(3) buffer layer is observed to nucleate and grow through a process of self-organization at initial deposition, which facilitates subsequent monolithic epitaxy of single-crystallineγ-In_(2)Se_(3) at low temperature. Strong room-temperature photoluminescence and moderate optoelectronic response are observed in the achieved γ-In_(2)Se_(3) thin films.展开更多
基金the financial support from Shenzhen Science and Technology Program (JCYJ20210324142210027, X.D.)the National Natural Science Foundation of China (52103136, 22275028, U22A20153, 22102017, 22302033, and 52106194)+5 种基金the Sichuan Outstanding Young Scholars Foundation (2021JDJQ0013)Natural Science Foundation of Sichuan Province (2022NSFSC1271)Sichuan Science and Technology Program (2023JDRC0082)“Oncology Medical Engineering Innovation Foundation” project of University of Electronic Science and Technology of China and Sichuan Cancer Hospital (ZYGX2021YGCX009)“Medical and Industrial Cross Foundation” of University of Electronic Science and Technology of China and Sichuan Provincial People’s Hospital (ZYGX2021YGLH207)Shandong Key R&D grant (2022CXGC010509)。
文摘Superhydrophobic surface(SHS) has been well developed, as SHS renders the property of minimizing the water/solid contact interface. Water droplets deposited onto SHS with contact angles exceeding 150°, allow them to retain spherical shapes, and the low adhesion of SHS facilitates easy droplet collection when tilting the substrate. These characteristics make SHS suitable for a wide range of applications. One particularly promising application is the fabrication of microsphere and supraparticle materials. SHS offers a distinct advantage as a universal platform capable of providing customized services for a variety of microspheres and supraparticles. In this review, an overview of the strategies for fabricating microspheres and supraparticles with the aid of SHS, including cross-linking process, polymer melting,and droplet template evaporation methods, is first presented. Then, the applications of microspheres and supraparticles formed onto SHS are discussed in detail, for example, fabricating photonic devices with controllable structures and tunable structural colors, acting as catalysts with emerging or synergetic properties, being integrated into the biomedical field to construct the devices with different medicinal purposes, being utilized for inducing protein crystallization and detecting trace amounts of analytes. Finally,the perspective on future developments involved with this research field is given, along with some obstacles and opportunities.
基金supported financially by the Natural Science Foundation of Shandong Province,China(grant numbers ZR2020QE067,ZR2020QB117,and ZR2022MB143)the New Colleges and Universities Twenty Foundational Projects of Jinan City,China(grant number 2021GXRC068)+2 种基金the National Natural Science Foundation of China,China(grant number 22208174)The Scientific Research Foundation in Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023PY002)The Talent research project of Qilu University of Technology(Shandong Academy of Sciences),China(grant numbers 2023RCKY013)。
文摘Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFE0202700 and 2023YFA1406500)the National Natural Science Foundation of China(Grant Nos.11974422 and 12104504)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)Fundamental Research Funds for the Central Universities,and Research Funds of Renmin University,China(Grant No.22XNKJ30)supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University,China。
文摘Two-dimensional(2D)van der Waals magnetic materials have promising and versatile electronic and magnetic properties in the 2D limit,indicating a considerable potential to advance spintronic applications.Theoretical predictions thus far have not ascertained whether monolayer VCl_(3) is a ferromagnetic(FM)or anti-FM monolayer;this also remains to be experimentally verified.We theoretically investigate the influence of potential factors,including C_(3) symmetry breaking,orbital ordering,epitaxial strain,and charge doping,on the magnetic ground state.Utilizing first-principles calculations,we predict a collinear type-Ⅲ FM ground state in monolayer VCl_(3) with a broken C_(3) symmetry,wherein only the former two of three t_(2g)orbitals(a_(1g),e_(g2)^(π)and e_(g1)^(π))are occupied.The atomic layer thickness and bond angles of monolayer VCl_(3) undergo abrupt changes driven by an orbital ordering switch,resulting in concomitant structural and magnetic phase transitions.Introducing doping to the underlying Cl atoms of monolayer VCl_(3) without C_(3) symmetry simultaneously induces in-and out-of-plane polarizations.This can achieve a multiferroic phase transition if combined with the discovered adjustments of magnetic ground state and polarization magnitude under strain.The establishment of an orbital-ordering driven regulatory mechanism can facilitate deeper exploration and comprehension of magnetic properties of strongly correlated systems in monolayer VCl_(3).
基金the financial support from the National Key Research and Development Program of China(2019YFB2203400)the"111 Project"(B20030)ARC DP210102215。
文摘Lithium-selenium(Li-Se)batteries are deemed as an emerging high energy density electrochemical energy storage system owing to their high specific capacity and volume capacity.Prior to their practicality,a series of critical challenges from the Se cathode side need to be overcome including low reactivity of bulk Se,shuttle effect of intermediates,sluggish redox kinetics of polyselenides,and volume change etc.In this review,recent progress on design strategies of functional Se cathodes are comprehensively summarized and discussed.Following the significance and key challenges,various efficient functionalized strategies for Se cathodes are presented,encompassing covalent bonding,nanostructure construction,heteroatom doping,component hybridization,and solid solution formation.Specially,the universality of these functional strategies are successfully extended into Na-Se batteries,K-Se batteries,and Mg-Se batteries.At last,a brief summary is made and some perspectives are offered with the goal of guiding future research advances and further exploration of these strategies.
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province,Grant/Award Number:LR20E020001Foundation of State Key Laboratory of Coal Conversion,Grant/Award Number:J20-21-909+4 种基金Science and Technology Department of Zhejiang Province,Grant/Award Number:2023C01231National Natural Science Foundation of China,Grant/Award Numbers:52372235,52073252,52002052,22379020,U20A20253,21972127,22279116Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment,Grant/Award Number:SKLPEE-KF202206Key Research and Development Project of Science and Technology Department of Sichuan Province,Grant/Award Number:2022YFSY0004Ministry of Education,Grant/Award Number:KFM 202202。
文摘Ingenious design and fabrication of advanced carbon-based sulfur cathodes are extremely important to the development of high-energy lithium-sulfur batteries,which hold promise as the next-generation power source.Herein,for the first time,we report a novel versatile hyphae-mediated biological assembly technology to achieve scale production of hyphae carbon fibers(HCFs)derivatives,in which different components including carbon,metal compounds,and semiconductors can be homogeneously assembled with HCFs to form composite networks.The mechanism of biological adsorption assembly is also proposed.As a representative,reduced graphene oxides(rGOs)decorated with hollow carbon spheres(HCSs)successfully co-assemble with HCFs to form HCSs@rGOs/HCFs hosts for sulfur cathodes.In this unique architecture,not only large accommodation space for sulfur but also restrained volume expansion and fast charge transport paths are realized.Meanwhile,multiscale physical barriers plus chemisorption sites are simultaneously established to anchor soluble lithium polysulfides.Accordingly,the designed HCSs@rGOs/HCFs-S cathodes deliver a high capacity(1189 mA h g^(-1)at 0.1 C)and good high-rate capability(686 mA h g^(-1)at 5 C).Our work provides a new approach for the preparation of high-performance carbon-based electrodes for energy storage devices.
基金financially supported by the National Natural Science Foundation of China (62174021 and 62104028)the Creative Research Groups of the National Natural Science Foundation of Sichuan Province (2023NSFSC1973)+7 种基金the Sichuan Science and Technology Program (MZGC20230008)the Natural Science Foundation of Sichuan Province (2022NSFSC0899)the China Postdoctoral Science Foundation (2021M700689)the Grant SCITLAB (20012) of Intelligent Terminal Key Laboratory of Sichuan ProvinceFundamental Research Funds for the Central Universities (ZYGX2019J054)the Guangdong Basic and Applied Basic Research Foundation (2019A1515110438)sponsored by the University of Kentuckythe Sichuan Province Key Laboratory of Display Science and Technology。
文摘Two-dimensional(2D) alternating cation(ACI) perovskite surface defects,especially dominant iodine vacancies(V_Ⅰ) and undercoordinated Pb^(2+),limit the performance of perovskite solar cells(PVSCs).To address the issue,1-butyl-3-methylimidazolium trifluoro-methane-sulfonate(BMIMOTF) and its iodide counterpart(BMIMI) are utilized to modify the perovskite surface respectively.We find that BMIMI can change the perovskite surface,whereas BMIMOTF shows a nondestructive and more effective defect passivation,giving significantly reduced defect density and suppressed charge-carrier nonradiative recombination.This mainly attributes to the marked passivation efficacy of OTF-anion on V_Ⅰ and undercoordinated Pb^(2+),rather than BMIMI^(+) cation.Benefiting from the rational surface-modification of BMMIMOTF,the films exhibit an optimized energy level alignment,enhanced hydrophobicity and suppressed ion migration.Consequently,the BMIMOTF-modified devices achieve an impressive efficiency of 21.38% with a record open-circuit voltage of 1.195 V,which is among the best efficiencies reported for 2D PVSCs,and display greatly enhanced humidity and thermal stability.
基金the National Natural Science Foundation of China(Grant No.11975214)。
文摘Dielectric laser accelerators(DLAs)are considered promising candidates for on-chip particle accelerators that can achieve high acceleration gradients.This study explores various combinations of dielectric materials and accelerated structures based on the inverse Cherenkov effect.The designs utilize conventional processing methods and laser parameters currently in use.We optimize the structural model to enhance the gradient of acceleration and the electron energy gain.To achieve higher acceleration gradients and energy gains,the selection of materials and structures should be based on the initial electron energy.Furthermore,we observed that the variation of the acceleration gradient of the material is different at different initial electron energies.These findings suggest that on-chip accelerators are feasible with the help of these structures and materials.
基金supported by the National Natural Science Foundation of China(No.52171022,No.22105214)Zhejiang Provincial Natural Science Foundation of China(Grant No.LXR22B030001)+3 种基金Fujian Institute of Innovation and Chinese Academy of Sciences.K.C.Wong Education Foundation(GJTD-2019-13)the National Key Research and Development Program of China(2019YFB2203400)Ningbo Yongjiang Talent Introduction Programme(2021A-036-B)NingBo S&T Innovation 2025 Major Special Programme(No:2020z059)and the“111 Project”(B20030).
文摘Oxygenated carbon materials exhibit outstanding electrocatalytic performance in the production of hydrogen peroxide(H2O2)through a two-electron oxygen reduction reaction.The nature of the active functional group and underlying reaction mechanism,however,remain unclear.Here,a comprehensive workflow was established to identify the active sites from the numerous possible structures.The common hydroxyl group at the notched edge demonstrates a key role in the two-electron process.The local chemical environment weakens the binding of OOH intermediate to substrate while enhancing interaction with solution,thereby promoting the H_(2)O_(2)production.With increasing pH,the intramolecular hydrogen bond between OOH intermediate and hydroxyl decreases,facilitating OOH desorption.Furthermore,the rise in selectivity with increasing potential stems from the suppression of the four-electron process.The active site was further validated through experiments.Guided by theoretical understanding,optimal performance was achieved with high selectivity(>95%)and current density(2.06 mA/cm^(2))in experiment.
基金financially supported by the National Natural Science Foundation of China(Grant No.21905033,52271201)the Key Research and DevelopmentProgram of Sichuan Province(Grant No.2022YFG0100)+1 种基金the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province(Grant No.2022ZYD0045)the State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization(Grant No.2020P4FZG02A)
文摘The interfacial chemistry of solid electrolyte interphases(SEI)on lithium(Li)electrode is directly determined by the structural chemistry of the electric double layer(EDL)at the interface.Herein,a strategy for regulating the structural chemistry of EDL via the introduction of intermolecular hydrogen bonds has been proposed(p-hydroxybenzoic acid(pHA)is selected as proof-of-concept).According to the molecular dynamics(MD)simulation and density functional theory(DFT)calculation results,the existence of hydrogen bonds realizes the anion structural rearrangement in the EDL,reduces the lowest unoccupied molecular orbital(LUMO)energy level of anions in the EDL,and the number of free solvent molecules,which promotes the formation of inorganic species-enriched SEI and eventually achieves the dendrite-free Li deposition.Based on this strategy,Li‖Cu cells can stably run over 185 cycles with an accumulated active Li loss of only 2.27 mAh cm^(-2),and the long-term cycle stability of Li‖Li cells is increased to 1200 h.In addition,the full cell pairing with the commercial LiFePO_(4)(LFP)cathodes exhibits stable cycling performance at 1C,with a capacity retention close to 90%after 200 cycles.
基金supported by the National Natural Science Foundation of China(52200123)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP2022007)the Scientific Research and Innovation Team Program of Sichuan University of Science and Engineering(SUSE652A014)。
文摘Although the internal electric field(IEF)of photocatalysts is acknowledged as a potent driving force for photocharge separation,modulating the IEF intensity to achieve enhanced photocatalytic performances remains a challenge.Herein,cuprous sulfide nanosheets with different Cu vacancy concentration were employed to study IEF modulation and corresponding direct charge transfer.Among the samples,Cu_(1.8)S nanosheets possessed intensified IEF intensity compared with those of Cu_(2)S and Cu_(1.95)S nanosheets,suggesting that an enhanced IEF intensity could be achieved by introducing more Cu vacancies.This intensified IEF of Cu_(1.8)S nanosheets induced numerous photogenerated electrons to migrate to its surface,and the dissociative electrons were then captured by Cu vacancies,resulting in efficient charge separation spatially.In addition,the Cu vacancies on Cu_(1.8)S nanosheets accumulated electrons as active sites to lower the energy barrier of rate-determining step of CO_(2)photoreduction,leading to the selective conversion of CO_(2)to CO.Herein,the manipulation of IEF intensity through Cu vacancy concentration regulation of cuprous sulfide photocatalysts for efficient charge separation has been discussed,providing a scientific strategy to rationally improve photocata lytic performances for solar energy conversion.
基金supported by the link project of the National Natural Science Foundation of China(52002052 and 22209020)the Key Research and Development Project of Science and Technology Department of Sichuan Province(2022YFSY0004)+2 种基金the Opening project of the State Key Laboratory of New Textile Materials and Advanced Processing Technology(FZ2021009)the Natural Science Foundation of Sichuan Province(2023NSFSC0995)the Natural Science Foundation of Hunan Province(2022JJ30227)。
文摘The anti-freezing strategy of hydrogels and their self-healing structure are often contradictory,it is vital to break through the molecular structure to design and construct hydrogels with intrinsic anti-freezing/self-healing for meeting the rapid development of flexible and wearable devices in diverse service conditions.Herein,we design a new hydrogel electrolyte(AF/SH-Hydrogel)with intrinsic anti-freezing/self-healing capabilities by introducing ethylene glycol molecules,dynamic chemical bonding(disulfide bond),and supramolecular interaction(multi-hydrogen bond)into the polyacrylamide molecular chain.Thanks to the exceptional freeze resistance(84%capacity retention at-20℃)and intrinsic self-healing capabilities(95%capacity retention after 5 cutting/self-healing cycles),the obtained AF/SH-Hydrogel makes the zinc||manganese dioxide cell an economically feasible battery for the state-of-the-art applications.The Zn||AF/SH-Hydrogel||MnO_(2)device offers a near-theoretical specific capacity of 285 m A h g^(-1)at 0.1 A g^(-1)(Coulombic efficiency≈100%),as well as good self-healing capability and mechanical flexibility in an ice bath.This work provides insight that can be utilized to develop multifunctional hydrogel electrolytes for application in next generation of self-healable and freeze-resistance smart aqueous energy storage devices.
基金supported by the National Key R&D Program of China(2016YFC02047)the National Natural Science Foundation of China(21822601,21777011,and 21501016)+3 种基金the Graduate Research and Innovation Foundation of Chongqing(CYS18019)the Innovative Research Team of Chongqing(CXTDG201602014)the Natural Science Foundation of Chongqing(cstc2017jcyjBX0052)the National Special Supporting National Plan for High-Level~~
文摘There is an increasing interest in bismuth carbonate(Bi2O2CO3,BOC)as a semiconductor photocatalyst.However,pure BOC strongly absorbs ultraviolet light,which drives a high recombination rate of charge carriers and thereby limits the overall photocatalysis efficiency.In this work,artificial oxygen vacancies(OV)were introduced into BOC(OV-BOC)to broaden the optical absorption range,increase the charge separation efficiency,and activate the reactants.The photocatalytic removal ratio of NO was increased significantly from 10.0%for pure BOC to 50.2%for OV-BOC because of the multiple roles played by the oxygen vacancies.These results imply that oxygen vacancies can facilitate the electron exchange between intermediates and the surface oxygen vacancies in OV-BOC,making them more easily destroyed by active radicals.In situ DRIFTS spectra in combination with electron spin resonance spectra and density functional theory calculations enabled unraveling of the conversion pathway for the photocatalytic NO oxidation on OV-BOC.It was found that oxygen vacancies could increase the production of active radicals and promote the transformation of NO into target products instead of toxic byproducts(NO2),thus the selectivity is significantly enhanced.This work provides a new strategy for enhancing photocatalytic activity and selectivity.
文摘To optimize the electronic structure of photocatalyst,a facile one‐step approach is developed for the simultaneous realization of Zn‐doping and surface oxygen vacancies(SOVs)formation on SnO_(2).The Zn‐doped SnO_(2)with abundant SOVs exhibits efficient and stable performance for photocatalytic degradation of toluene under both low and high relative humidity.Experimental and theoretical calculations results show that the synergistic effects of Zn‐doping and SOVs on SnO_(2)can considerably boost the charge transfer and separation efficiency.Utilizing the in situ DRIFTS and theoretical calculations methods,it is revealed that the benzene ring of toluene is opened at benzoic acid on the SnO_(2)surface and selectively at benzaldehyde on the Zn‐doped SnO_(2)surface.This implies that Zn‐doped SnO_(2)photocatalysts shorten the pathway of toluene degradation,and toxic intermediates can be significantly inhibited.This work could provide a promising and sustainable route for safe and efficient removal of aromatic VOCs with photocatalytic technology.
基金the National Natural Science Foundation of China(Grant Nos.21822601,21777011,and 52002054)the Fundamental Research Funds for the Central Universities(ZYGX2019Z021)+1 种基金the 111 Project(B20030)the Plan for"National Youth Talents"of the Organization Department of the Central Committee.
文摘With the rising global population,increasing energy demand and rapid climate change,great concems have been raised for environment and energy security in future.Solar-driven CO_(2) reduction provides a promising way to deal with energy crists and global warming,which has been widely concemed.Photoelectrocatalysis technology can effectively utilize solar energy and avoid to use high-temperature and high-voltage reduction environment by integrating the vantages of both photocatalysis and electrocatalysis,which exhibits a broad application prospect of CO_(2) reduction with a high efficiency and ecellent selectivity.In this review,basic pr inciples of CO_(2) reduction by photocatalysis,electrocatalysis and photoeletrocatalysis are briely reviewed,also comparing the technical character istics of the above technologies.Diferent photoelectrocatalyde systems for CO_(2) reduction are described and compared.The several key influencing factors of photoeletrocatalytic performance of CO_(2) reduction are discussed,including inter action between reaction molecules and catalysts,reaction conditions and influence of photoelectrode.Then,the advances on reaction mechanisms and strategies of perfor mance enhancement by opd:mizing photoexcitation,charge separation efficiency and surface reaction were reviewed.Besides,the chal-lenges and prospects of photoelectrocatalyde CO_(2) reduction will be also discussed.
基金the financial support provided by the Graduate Research and innovation of Chongqing, China (Grant No. CYB18002)the National Natural Science Foundation of China (Grant No. 21576034 and 51908092)+1 种基金the State Education Ministry and Fundamental Research Funds for the Central Universities (2019CDQYCL042, 2019CDXYCL0031, 106112017CDJXSYY0001, 2018CDYJSY0055, 106112017CDJQJ138802, 106112017CDJSK04XK11, and 2018CDQYCL0027)the Joint Funds of the National Natural Science Foundation of China-Guangdong (Grant No. U1801254)。
文摘Cobalt-Aluminum layered double hydroxide(CoAl LDH) is a hopeful electrode material due to the advantage of easy modifiability for preparing LDH-based derivatives.However,there is short of modification methods to prepare the Co-based derivatives from CoAl LDH and also short of an intuitive perspective to analyze the pseudocapacitance mechanism of CoAl LDH and its derivatives.Herein,Graphene/CoAl LDH and its derivatives including Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP were prepared by reasonably using alkali etching treatment,sulfofication and phosphorization.The specific capacitance of Graphene/CoAl LDH,Graphene/CoS,Graphene/CoS-1,Graphene/CoOOH,Graphene/CoP at1 A g^(-1) are 260.7,371.3,440.8,61.4 and 122.2 F g^(-1),especially.The pseudocapacitance mechanism of Graphene/CoAl LDH and its derivatives was analyzed.Due to the positive effect of sulfofication on the electrical conductivity of GO and cobalt sulfide,the Graphene/CoS and Graphene/CoS-1 exhibit the optimal electrochemical performance and superior rate capability.In addition,due to the repulsion effect between Graphene and OH-,the Graphene/CoAl LDH exhibits optimal cycling stability of 224.1% capacitance retention after 20000 cycles.Besides,the reason of terrible specific capacitance of Graphene/CoOOH is that the presence of H bond in interlayer of CoOOH inhibits the interaction between Co3+ and OHspecies.Hence,not all modifications will increase the specific capacitance of the electrode materials.Overall,this work provides us with a detailed analysis of the electrochemical mechanism and correlation of CoAl LDH and its derivatives from the perspective of crystal structure and composition.
基金supported by the National Higher Education Institution General Research and Development Funding under Grant No.ZYGX2012J034National Basic Research Program of China(973)under Grants No.2015CB358600 and No.2013CB933801
文摘Hybrid organic-inorganic perovskites (e.g. CH;NH;PbI;) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices.These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g.high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites.As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility,low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.
基金supported by the Fundamental Research Funds for the Central Universities(2018CDYJSY0055)the National Natural Science Foundation of China(21576034)+3 种基金Joint Funds of the National Natural Science Foundation of China-Guangdong(U1801254)the project funded by Chongqing Special Postdoctoral Science Foundation(Xm T2018043)Technological projects of Chongqing Municipal Education Commission(KJZDK201800801)the Innovative Research Team of Chongqing(CXTDG201602014)~~
文摘Charge separation and transformation are some of the key requirements for high-efficiency photocatalysis. The photocatalytic reaction mechanism provides a guideline for the development and commercialization of high-efficiency photocatalysts. In this study, we designed and favorably synthesized BMO@BOC heterojunctions via a facile solvothermal route and applied the heat treatment method for application in high-efficiency photocatalytic NO removal. More importantly, both continuous stream and intermittent stream methods with in situ diffuse reflectance infrared Fourier transform spectroscopy were applied to intuitively and dynamically investigate the adsorption process and oxidation process of NO removal over the photocatalyst surface. The intermediate products(NO-, NO2-, and NO2) were explicitly detected in both the adsorption process and oxidation process, whilst the final product(NO3-) appeared only in the oxidation process, owing to the separation, migration, and conversion of photoinduced electron-hole pairs.
基金This work has been supported by the Strategic Research on Disruptive Technologies for Engineering Science and Technology(2019-ZD-27-04).
文摘1.Introduction In the era of the new century,driven by the development of the intelligent society,the integration of the field of electronics and information with various technical fields and industries has accelerated and become the major driving force for a new round of technological revolution and industrial transformation.This has advanced the profound adjustment of global technology,industry,and division of labor as well as reshaping the innovation and competitiveness of countries around the world.Electronics information has received the most concentrated research and development investment worldwide and has been actively advancing and playing a leading role in dissemination.Naturally,it has become an important strategic area in which the world’s scientific and technological powers seek economic advances and competitive advantages.
基金Project supported by the National Key R&D Program of China(Grant Nos.2018YFA0306102 and 2018YFA0306703)the National Natural Science Foundation of China(Grant No.61474014)+1 种基金the Sichuan Science and Technology Program,China(Grant No.2019YJ0202)the University Program for Elaborate Courses of Postgraduates。
文摘The growth of γ-In_(2)Se_(3) thin films on mica by molecular beam epitaxy is studied. Single-crystalline γ-In_(2)Se_(3) is achieved at a relatively low growth temperature. An ultrathin β-In_(2)Se_(3) buffer layer is observed to nucleate and grow through a process of self-organization at initial deposition, which facilitates subsequent monolithic epitaxy of single-crystallineγ-In_(2)Se_(3) at low temperature. Strong room-temperature photoluminescence and moderate optoelectronic response are observed in the achieved γ-In_(2)Se_(3) thin films.