期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechanism of the December 2015 Catastrophic Landslide at the Shenzhen Landfill and Controlling Geotechnical Risks of Urbanization 被引量:75
1
作者 Yueping Yin Bin Li +7 位作者 Wenpei Wang Liangtong Zhan Qiang Xue Yang Gao Nan Zhang Hongqi Chen Tiankui Liu Aiguo Li 《Engineering》 SCIE EI 2016年第2期230-249,共20页
This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 peo... This paper presents findings from an investigation of the large-scale construction solid waste (CSW) landslide that occurred at a landfill at Shenzhen, Guangdong, China, on December 20, 2015, and which killed 77 people and destroyed 33 houses. The landslide involved 2.73 - 106 m3 of CSW and affected an area about 1100 m in length and 630 m in maximum width, making it the largest landfill landslide in the world. The investigation of this disaster used a combination of unmanned aerial vehicle surveillance and multistage remote-sensing images to reveal the increasing volume of waste in the landfill and the shifting shape of the landfill slope for nearly two years before the landslide took place, beginning with the creation of the CSW landfill in March, 2014, that resulted in the uncertain conditions of the landfill's boundaries and the unstable state of the hydrologic performance. As a result, applying conventional stability analysis methods used for natural landslides to this case would be difficult. In order to analyze this disaster, we took a multistage modeling technique to analyze the varied characteristics of the land- fill slope's structure at various stages of CSW dumping and used the non-steady flow theory to explain the groundwater seepage problem. The investigation showed that the landfill could be divided into two units based on the moisture in the land: (1) a front uint, consisted of the landfill slope, which had low water content; and (2) a rear unit, consisted of fresh waste, which had a high water content. This struc- ture caused two effects-surface-water infiltration and consolidation seepage that triggered the landslide in the landfill. Surface-water infiltration induced a gradual increase in pore water pressure head, or piezometric head, in the front slope because the infiltrating position rose as the volume of waste placement increased. Consolidation seepage led to higher excess pore water pressures as the loading of waste increased. We also investigated the post-failure soil dynamics parameters of the landslide deposit using cone penetration, triaxial, and ring-shear tests in order to simulate the characteristics of a flowing slide with a long run-out due to the liquefaction effect. Finally, we conclude the paper with lessons from the tens of catastrophic landslides of municipal solid waste around the world and discuss how to better manage the geotechnical risks of urbanization. 展开更多
关键词 Construction solid waste (CSW)Landfill landslideFactor of safety (FOS)Geotechnical risk
下载PDF
Evolution of Groundwater Major Components in the Hebei Plain: Evidences from 30-Year Monitoring Data
2
作者 Yanhong Zhan Huaming Guo +4 位作者 Yu Wang Ruimin Li Chuntang Hou Jingli Shao Yali Cui 《Journal of Earth Science》 SCIE CAS CSCD 2014年第3期563-574,共12页
Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding... Groundwater is the main water source in the Hebei Plain. Evolution of groundwater chemistry can not only provide scientific data for sustainable usage of groundwater resources, but also help us in better understanding hydrogeochemical processes in aquifers. Spatial distribution and temporal evolution were analyzed on basis of monitoring data between 1975 and 2005. Results showed that major components in groundwater had increasing trends since 1970s. Major components in shallow groundwater increased more than those in deep one. In shallow groundwater of piedmont alluvial fan-recharge zone, concentrations of Na+, Ca2+, SO42- had great increasing trends, while other major components increased by less than 30%. There were great increasing trends in Na+, Cl-, SO42- concentrations in deep groundwater of central alluvial plain-intermediate zone, while other major components increased by no more than 20%. Deep groundwater from coast plain-discharge zone and piedmont alluvial fan-recharge zone showed no significant variations in major ion concentrations. In shallow groundwater, dissolution, evaporation and human activities played a major role in the increase in major components. However, groundwater mixture resulting from deep groundwater exploitation was believed to be the major factors for the increases in major components in deep groundwater of central alluvial plain-intermediate zone. 展开更多
关键词 Hebei Plain groundwater major component water-rock interaction EVOLUTION TEMPORAL spatial.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部