China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t...China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.展开更多
Dilution and attenuation factor (DAF) has a major influence on soil-to-groundwater screening level calculation for protection of contaminant migration from soil into groundwater at solid waste management units (SWMUs)...Dilution and attenuation factor (DAF) has a major influence on soil-to-groundwater screening level calculation for protection of contaminant migration from soil into groundwater at solid waste management units (SWMUs). Risk assessment guidance prepared by U.S. Environmental Protection Agency for site investigation and remediation suggests a default DAF of 20. If the base assumptions included in the default DAF are recognized to be not representative of site conditions at a SWMU, calculation of site-specific DAF is recommended when sufficient data are collected to justify using a different DAF value for development of soil screening levels. Commonly used methods of calculating DAF include analytical and numerical simulations that often require too many parameters to be obtained in practice. This paper proposes a probability method to develop site-specific DAF. The approach uses data that are readily available through field reconnaissance and site-specific investigation. A case study is presented in which the probability method was applied to an actual SWMU, and the calculated DAF is compared with that calculated from a dilution method. The probability-based DAF is 67 at 90% probability percentile, which is comparable to the dilution-based DAF of 76. Based on the calculated site-specific DAFs, SSLs could be developed for the contaminants of potential concern and used for evaluation of migration pathways from a contamination source through soil to groundwater. .展开更多
Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES te...Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.展开更多
Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identi...Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.展开更多
The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake...The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake salinity and hydrochemistry are the basis of paleoenvironment reconstruction.The modern hydrochemical characteristics and the relationship between ion composition and salinity of modern lakes are the basis of paleosalinity reconstruction.In this study,hydrochemical analysis of 21 lakes in the Badain Jaran Desert(BJD)was carried out.The relationships between the Sr/Ca and Mg/Ca ratios and total dissolved solids(TDS)were analyzed.The results show that Na^(+),K^(+),Cl-and SO_(4)^(2-)have high positive correlations with TDS,and Mg^(2+),Sr^(2+),CO_(3)_(2-)and HCO_(3)^(-)have lower correlations with TDS.The Sr/Ca and Mg/Ca ratios do not increase linearly with TDS.Hydrochemical analysis indicates that the studied lakes are in the carbonate precipitation stage and that evaporation is the main factor controlling lake evolution in the BJD.The relationships between the Mg/Ca and Sr/Ca ratios and TDS are mainly influenced by lake evolution stage and the hydrochemical types of the lakes.On the basis of comprehensive previous studies,the factors affecting lake evolution,the Mg and Sr partition coefficients and other hydrochemical parameters that change with lake evolution all affect the relationship between chemical composition and salinity.To reconstruct paleosalinity more accurately,more detailed research on the modern hydrochemical characteristics of lakes and the relationship between the element ratios of carbonates and water salinity should be carried out.展开更多
The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in eff...The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.展开更多
Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics...Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics and driving factors of the hydrochemical components in Baiyangdian Lake using geochemical methods(Gibbs diagram,Piper diagram and End-element diagram of ion ratio)and multivariate statistical techniques(Principal component analysis and Correlation analysis).16 sets of samples were collected from Baiyangdian Lake in May(normal season),July(flood season),and December(dry season)of 2022.Results indicate significant spatial variation in Nat,ci,SO and NO,,suggesting a strong influence of human activities.Cation concentrations exhibit greater seasonal variation in the dry season compared to the flood season,while the concentrations of the four anions show inconsistent seasonal changes due to the combined effects of river water chemical composition and human activities.The hydrochemical type of Baiyangdian Lake is primarily HCO,Cl-Na.Ca,Mg*and HCO,originate mainly from silicate and carbonate rock dissolution,while Kt,Nat and CI originate mainly from sewage and salt dissolution in sediments.SO42 may mainly stem from industrial wastewater,while NO,primarily originates from animal feces and domestic sewage.Through the use of Principal Component Analysis,it is identified that water-rock interaction(silicate and carbonate rocks dissolution,and dissolution of salt in sediments),carbonate sedimentation,sewage,agricultural fertilizer and manure,and nitrification are the main driving factors of the variation of hydrochemical components of Baiyangdian Lake across three hydrological seasons.These findings suggest the need for effective control of substandard domestic sewage discharge,optimization of agricultural fertilization strategies,and proper management of animal manure to comprehensively improve the water environment in Baiyangdian Lake.展开更多
Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent adv...Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent advancements in geothermal exploration,particularly the identification of high-temperature geothermal resources in Datong Basin,Shanxi,China,have opened new possibilities.This study aims to characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins hosting high-temperature geothermal resources.A total of 70 groups of rock samples were collected from outcrops in and around Datong Basin,Shanxi Province.Thermal property tests were carried out to analyze the rock properties,and the influencing factors of thermal conductivity were studied through experiments at different temperature and water-filled states.The results indicate that the thermal conductivity of rocks in Datong,Shanxi Province,typically ranges from 0.690 W/(m·K)to 6.460 W/(m·K),the thermal diffusion coefficient ranges from 0.441 mm^(2)/s to 2.023 mm^(2)/s,and the specific heat capacity of the rocks ranges from 0.569 KJ/(kg·℃)to 1.117 KJ/(kg·°C).Experimental results reveal the impact of temperature and water saturation on the thermal conductivity of the rock.The thermal conductivity decreases with increasing temperature and rises with high water saturation.A temperature correction formula for the thermal conductivity of different lithologies in the area is proposed through linear fitting.The findings from this study provide essential parameters for the assessment and prediction,development,and utilization of geothermal resources in the region and other basins with typical high-temperature geothermal resource.展开更多
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati...Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.展开更多
The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater ...The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater environment.Understanding the characteristics and genesis of groundwater salinization is crucial for preventing its deterioration and ensuring sustainable utilization.In this study,a comprehensive approach combining the ion ratio method,mineral saturation index method and multivariate statistical analysis was employed to investigate the hydrochemical characteristics and main controlling factors in the study area.The findings reveal that:(1)Groundwater samples in study area exhibit a neutral to slightly alkaline pH.The predominant chemical types of unconfined water are HCO_(3)-Ca·Na,HCO_(3)·Cl-Na·Ca and HCO_(3)·SO_(4)-Ca·Na,while confined water mainly exhibits Cl·HCO_(3)-Na and Cl-Na types.(2)Salinity coefficients indicate an increase in salinity from unconfined to confined water.TDS,Na^(+)and Cl^(–)concentrations show an increasing trend from mountainous to coastal areas in unconfined water,while confined water displays variability in TDS,Na^(+)and Cl^(–)concentrations.(3)Groundwater salinity is mainly influenced by water-rock interactions,including the dissolution of halite and gypsum,cation exchange,and seawater intrusion etc.Additionally,human activities and carbonate dissolution contribute to salinity in unconfined water.Seawater intrusion is identified as the primary factor leading to higher salinity in confined water compared to unconfined water,with increasing cation exchange and seawater interaction observed from unconfined to confined water.展开更多
Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and fu...Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and future trends of groundwater and ecology research,this study utilizes bibliometric methods and CiteSpace software to examine relevant published articles in the Web of Science(WOS)and CNKI databases from 1978 to 2022.Specifically,this study analyzes(1)the annual number of published papers;(2)research institutions;(3)keywords;and(4)evolution of research hotspots.The findings reveal that the United States,China,and Germany are the top three countries in groundwater and ecology research.International research hotspots mainly focus on microbial ecology,climate change,groundwater-surface water interactions in the hyporheic zone,biodiversity,and submarine groundwater discharge,while domestic research hotspots mainly focus on ecological water conveyance,ecological flow,groundwater development and utilization,groundwater pollution,and groundwater and ecological protection.Both domestic and international research hotspots exhibit interdisciplinary features with diverse research objects and assessment methods.Future research in this area is expected to focus on topics such as contamination,groundwater quality,framework,mechanism,spatial distribution,and dissolved organic matter.Additionally,the study of ecological recharge,ecological flow,ecological protection,water intake and use will continue to be the hot topics domestically.展开更多
Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the stu...Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.展开更多
1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(proba...1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(probable) human carcinogen. After reviewing recent researches on the pollution status,transport and transformation characteristics of 1,4-dioxane in the water environment, as well as the environmental pollution remediation and treatment technologies, and the status of environmental regulation,this paper addresses that the distribution of 1,4-dioxane in water bodies is significantly correlated with chlorinated hydrocarbon pollutants such as 1,1,1-trichloroethane(1,1,1-TCA) and trichloroethylene(TCE).It is noteworthy that 1,4-dioxane often occurs in symbiosis with 1,1,1-TCA and has a similarity contamination plume distribution to 1,1,1-TCA. The natural attenuation of 1,4-dioxane in groundwater environment is weak, but there is a certain degree of biological oxidation attenuation. Current methods for treating 1,4-dioxane pollution mainly include extraction-treatment technology, advanced oxidation treatment technology, modified biological treatment technology and phytoremediation technology, all of which have their limitations in practical application. Currently, there is no environmental regulation available for the 1,4-dioxane pollution worldwide, and no enforceable standard established for defining the health trigger levels of 1,4-dioxane in drinking water. Research on this contaminant in China is generally limited to the site or laboratory scale, and there are no studies on the environmental risk and quality standards for 1,4-dioxane in the water environment.展开更多
Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-drive...Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.展开更多
1. Objectives Ophiolites from the oceanic crust are important indicators for identifying tectonic suture zones. Recently, a continuous ophiolite belt was found near the Guola Mountain in the Nujiang tectonic belt. Due...1. Objectives Ophiolites from the oceanic crust are important indicators for identifying tectonic suture zones. Recently, a continuous ophiolite belt was found near the Guola Mountain in the Nujiang tectonic belt. Due to intensive hydrothermal alteration during tectonic evolution, clayey altered ophiolite with special engineering geological characteristics was formed, which has an extremely adverse impact on engineering stability. However, the adverse properties of clayey altered ophiolite are still not well understood in engineering practices(Zhang YS, et al., 2011).展开更多
The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture ...The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.展开更多
As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoy...As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoyuzhuang,Yangzhuang,Wumishan,Hongshuizhuang,and Tieling formations.The characteristics,formation periods,and controlling factors of reservoir tectonic fractures have been determined based on analyses of outcrops,cores,thin sections,and image logs.The results show that unfilled fractures account for over 87% and most tectonic fractures are high-angle shear fractures with angles concentrated at 40°to 70°and the fracture porosity increases linearly with an increased fracture aperture.Within the same tectonic setting and stress field,the lithology and layer thickness are the dominant factors governing the development of tectonic fractures,which are the most developed in dolomites and thin layers.Tectonic fractures were most likely formed in regions near faults or areas with larger stress gradients.The tectonic fractures in the carbonate geothermal reservoirs are roughly divided into four sets:NNW-SSE and NNE-SSW oriented‘X’-conjugated shear fractures formed from the Paleozoic to the pre-Yanshanian Movement;NE-SW-oriented shear fractures,formed in episode B of the Yanshanian Movement,occurred at the Early Cretaceous;nearly E-W-oriented tensional fractures formed in the late Yanshanian Movement at the Late Cretaceous to Paleogene,and NEE-SW-oriented shear fractures formed during the Himalayan movement.展开更多
The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significa...The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.展开更多
The source area of the Yellow River(SAYR),located above the Huangheyan hydrological station,is important for ecological preservation and water source conservation in the Yellow River Basin.In this area,the impact of w...The source area of the Yellow River(SAYR),located above the Huangheyan hydrological station,is important for ecological preservation and water source conservation in the Yellow River Basin.In this area,the impact of water conservation projects on the hydrology and the ecological environment is pivotal in protecting water resources and alpine vegetation ecosystems.This study investigates the impact of the Yellow River Source Hydropower Station on the runoff and ecological evolution of the SAYR,along with the underlying mechanism,using extensive datasets encompassing long-term meteorological,hydrological and remote sensing data from various time periods.Results show that,over the long term,precipitation is the primary factor driving runoff variations in the SAYR.Nevertheless,from 1990 to 2020,there is a notably inconsistent relationship between precipitation and runoff.After the completion of the Yellow River Source Hydropower Station in 2001,the water level of Eling Lake experienced and elevation of 2–3 m,leading to a gradual recovery of runoff.In addition,the basin's water balance shifted from a negative to a positive equilibrium,oscillating with changes in lake water levels.Consequently,the overflow zone of the Tangchama alluvial–proluvial fan in the upper reaches of the lakeshore shifted by 500 m,and marsh wetlands expanded by 20.78 km^(2).The increased storage of lakes and groundwater in the SAYR is the key controlling factor for the runoff recovery,changes in the basin's water balance,and enhancements in lakeshore vegetation ecology.Under the geological background of the Qinghai–Tibet Plateau's upliftment and intensified upstream river erosion,the basin experienced a substantial water imbalance due to declining discharge base levels,which is the most critical factor behind runoff attenuation in the SAYR towards the end of the 20th century.The construction of the hydropower station objectively raised the drainage base level of the basin,thereby positively contributing to the preservation of water balance,runoff stability,and the enhancement of swamps and wetlands along the lakeshore.展开更多
The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent t...The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.展开更多
基金supported by two projects initialed China Geological Survey: “Evaluation on Soil and Water Quality and Geological Survey in Xiong’an New Area (DD20189122)” and “Monitoring and Evaluation on Carrying Capacity of Resource and Environment in BeijingTianjin-Hebei Coordinated Development Zone and Xiong’an New Area (DD20221727)”
文摘China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area.
文摘Dilution and attenuation factor (DAF) has a major influence on soil-to-groundwater screening level calculation for protection of contaminant migration from soil into groundwater at solid waste management units (SWMUs). Risk assessment guidance prepared by U.S. Environmental Protection Agency for site investigation and remediation suggests a default DAF of 20. If the base assumptions included in the default DAF are recognized to be not representative of site conditions at a SWMU, calculation of site-specific DAF is recommended when sufficient data are collected to justify using a different DAF value for development of soil screening levels. Commonly used methods of calculating DAF include analytical and numerical simulations that often require too many parameters to be obtained in practice. This paper proposes a probability method to develop site-specific DAF. The approach uses data that are readily available through field reconnaissance and site-specific investigation. A case study is presented in which the probability method was applied to an actual SWMU, and the calculated DAF is compared with that calculated from a dilution method. The probability-based DAF is 67 at 90% probability percentile, which is comparable to the dilution-based DAF of 76. Based on the calculated site-specific DAFs, SSLs could be developed for the contaminants of potential concern and used for evaluation of migration pathways from a contamination source through soil to groundwater. .
基金supported by the National Nature Science Foundation of China under grant No.42272350the Foundation of Shanxi Key Laboratory for Exploration and Exploitation of Geothermal Resources under grant No.SX202202.
文摘Underground Thermal Energy Storage(UTES)store unstable and non-continuous energy underground,releasing stable heat energy on demand.This effectively improve energy utilization and optimize energy allocation.As UTES technology advances,accommodating greater depth,higher temperature and multi-energy complementarity,new research challenges emerge.This paper comprehensively provides a systematic summary of the current research status of UTES.It categorized different types of UTES systems,analyzes the applicability of key technologies of UTES,and evaluate their economic and environmental benefits.Moreover,this paper identifies existing issues with UTES,such as injection blockage,wellbore scaling and corrosion,seepage and heat transfer in cracks,etc.It suggests deepening the research on blockage formation mechanism and plugging prevention technology,improving the study of anticorrosive materials and water treatment technology,and enhancing the investigation of reservoir fracture network characterization technology and seepage heat transfer.These recommendations serve as valuable references for promoting the high-quality development of UTES.
基金funded by the National Natural Science Foundation of China(41907175)the Open Fund of Key Laboratory(WSRCR-2023-01)the project of the China Geological Survey(DD20230459).
文摘Groundwater is an important source of drinking water.Groundwater pollution severely endangers drinking water safety and sustainable social development.In the case of groundwater pollution,the top priority is to identify pollution sources,and accurate information on pollution sources is the premise of efficient remediation.Then,an appropriate pollution remediation scheme should be developed according to information on pollution sources,site conditions,and economic costs.The methods for identifying pollution sources mainly include geophysical exploration,geochemistry,isotopic tracing,and numerical modeling.Among these identification methods,only the numerical modeling can recognize various information on pollution sources,while other methods can only identify a certain aspect of pollution sources.The remediation technologies of groundwater can be divided into in-situ and ex-situ remediation technologies according to the remediation location.The in-situ remediation technologies enjoy low costs and a wide remediation range,but their remediation performance is prone to be affected by environmental conditions and cause secondary pollution.The ex-situ remediation technologies boast high remediation efficiency,high processing capacity,and high treatment concentration but suffer high costs.Different methods for pollution source identification and remediation technologies are applicable to different conditions.To achieve the expected identification and remediation results,it is feasible to combine several methods and technologies according to the actual hydrogeological conditions of contaminated sites and the nature of pollutants.Additionally,detailed knowledge about the hydrogeological conditions and stratigraphic structure of the contaminated site is the basis of all work regardless of the adopted identification methods or remediation technologies.
基金financially supported by the Basic Research Program of Chinese Academy of Geological Sciences(CAGS)(YK202302)the projects of the China Geological Survey(DD20221929,121201106000150093)the National Natural Science Foundation of China(41807420)。
文摘The reconstruction of paleohydrology,especially paleosalinity,is an important component of paleoenvironmental research.Researches on the modern characteristics of lake water chemistry and the relationship between lake salinity and hydrochemistry are the basis of paleoenvironment reconstruction.The modern hydrochemical characteristics and the relationship between ion composition and salinity of modern lakes are the basis of paleosalinity reconstruction.In this study,hydrochemical analysis of 21 lakes in the Badain Jaran Desert(BJD)was carried out.The relationships between the Sr/Ca and Mg/Ca ratios and total dissolved solids(TDS)were analyzed.The results show that Na^(+),K^(+),Cl-and SO_(4)^(2-)have high positive correlations with TDS,and Mg^(2+),Sr^(2+),CO_(3)_(2-)and HCO_(3)^(-)have lower correlations with TDS.The Sr/Ca and Mg/Ca ratios do not increase linearly with TDS.Hydrochemical analysis indicates that the studied lakes are in the carbonate precipitation stage and that evaporation is the main factor controlling lake evolution in the BJD.The relationships between the Mg/Ca and Sr/Ca ratios and TDS are mainly influenced by lake evolution stage and the hydrochemical types of the lakes.On the basis of comprehensive previous studies,the factors affecting lake evolution,the Mg and Sr partition coefficients and other hydrochemical parameters that change with lake evolution all affect the relationship between chemical composition and salinity.To reconstruct paleosalinity more accurately,more detailed research on the modern hydrochemical characteristics of lakes and the relationship between the element ratios of carbonates and water salinity should be carried out.
基金Funded by the“Investigation and Evaluation of the Hot Dry Rock Resources in the Guide-Dalianhai Area of the Gonghe Basin,Qinghai”(DD20211336,DD20211337,DD20211338)“Hot Dry Rock Resources Exploration and Production Demonstration Project”(DD20230018)of the China Geological Survey。
文摘The Hot Dry Rock(HDR)is considered as a clean and renewable energy,poised to significantly contribute to the global energy decarbonization agenda.Many HDR projects worldwide have accumulated valuable experience in efficient drilling and completion,reservoir construction,and fracture simulation.In 2019,China Geological Survey(CGS)initiated a demonstration project of HDR exploration and production in the Gonghe Basin,aiming to overcome the setbacks faced by HDR projects.Over the ensuing four years,the Gonghe HDR project achieved the first power generation in 2021,followed by the second power generation test in 2022.After establishing the primary well group in the initial phase,two directional wells and one branch well were drilled.Noteworthy progress was made in successfully constructing the targeted reservoir,realizing inter-well connectivity,power generation and grid connection,implementing of the real-time micro-seismic monitoring.A closed-loop technical validation of the HDR exploration and production was completed.However,many technical challenges remain in the process of HDR industrialization,such as reservoir fracture network characterization,efficient drilling and completion,multiple fracturing treatment,continuous injection and production,as well as mitigation of induced seismicity and numerical simulation technology.
基金supported by the Natural Science Foundation of China(Grant No.42377232)Natural Science Foundation of Hebei Province of China(Grant No.D2022504015)+1 种基金the Fundamental Research Funds for the Chinese Academy of Geological Sciences(No.YK202310)the open funds of laboratory of water environmental science of Hebei Province,China(Grant No.HBSHJ 202103).
文摘Understanding the temporal and spatial variation of hydrochemical components in large freshwater lakes is crucial for effective management and conversation.In this study,we identify the temporalspatial characteristics and driving factors of the hydrochemical components in Baiyangdian Lake using geochemical methods(Gibbs diagram,Piper diagram and End-element diagram of ion ratio)and multivariate statistical techniques(Principal component analysis and Correlation analysis).16 sets of samples were collected from Baiyangdian Lake in May(normal season),July(flood season),and December(dry season)of 2022.Results indicate significant spatial variation in Nat,ci,SO and NO,,suggesting a strong influence of human activities.Cation concentrations exhibit greater seasonal variation in the dry season compared to the flood season,while the concentrations of the four anions show inconsistent seasonal changes due to the combined effects of river water chemical composition and human activities.The hydrochemical type of Baiyangdian Lake is primarily HCO,Cl-Na.Ca,Mg*and HCO,originate mainly from silicate and carbonate rock dissolution,while Kt,Nat and CI originate mainly from sewage and salt dissolution in sediments.SO42 may mainly stem from industrial wastewater,while NO,primarily originates from animal feces and domestic sewage.Through the use of Principal Component Analysis,it is identified that water-rock interaction(silicate and carbonate rocks dissolution,and dissolution of salt in sediments),carbonate sedimentation,sewage,agricultural fertilizer and manure,and nitrification are the main driving factors of the variation of hydrochemical components of Baiyangdian Lake across three hydrological seasons.These findings suggest the need for effective control of substandard domestic sewage discharge,optimization of agricultural fertilization strategies,and proper management of animal manure to comprehensively improve the water environment in Baiyangdian Lake.
基金supported by the Geothermal Survey Project of the China Geological Survey(Grant No.DD20221676)the Shanxi Geoscience Think Tank Development Fund 2023–001 and Basic Research Operations Project of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202212).
文摘Rock thermal physical properties play a crucial role in understanding deep thermal conditions,modeling the thermal structure of the lithosphere,and discovering the evolutionary history of sedimentary basins.Recent advancements in geothermal exploration,particularly the identification of high-temperature geothermal resources in Datong Basin,Shanxi,China,have opened new possibilities.This study aims to characterize the thermal properties of rocks and explore factors influencing thermal conductivity in basins hosting high-temperature geothermal resources.A total of 70 groups of rock samples were collected from outcrops in and around Datong Basin,Shanxi Province.Thermal property tests were carried out to analyze the rock properties,and the influencing factors of thermal conductivity were studied through experiments at different temperature and water-filled states.The results indicate that the thermal conductivity of rocks in Datong,Shanxi Province,typically ranges from 0.690 W/(m·K)to 6.460 W/(m·K),the thermal diffusion coefficient ranges from 0.441 mm^(2)/s to 2.023 mm^(2)/s,and the specific heat capacity of the rocks ranges from 0.569 KJ/(kg·℃)to 1.117 KJ/(kg·°C).Experimental results reveal the impact of temperature and water saturation on the thermal conductivity of the rock.The thermal conductivity decreases with increasing temperature and rises with high water saturation.A temperature correction formula for the thermal conductivity of different lithologies in the area is proposed through linear fitting.The findings from this study provide essential parameters for the assessment and prediction,development,and utilization of geothermal resources in the region and other basins with typical high-temperature geothermal resource.
文摘Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.
基金supported by investigation project of China Geological Survey(DD20230507).
文摘The coastal areas of the lower reaches of Oujiang River Basin are rich in groundwater resources.However,the unsustainable exploitation and utilization of groundwater have led to significant changes in the groundwater environment.Understanding the characteristics and genesis of groundwater salinization is crucial for preventing its deterioration and ensuring sustainable utilization.In this study,a comprehensive approach combining the ion ratio method,mineral saturation index method and multivariate statistical analysis was employed to investigate the hydrochemical characteristics and main controlling factors in the study area.The findings reveal that:(1)Groundwater samples in study area exhibit a neutral to slightly alkaline pH.The predominant chemical types of unconfined water are HCO_(3)-Ca·Na,HCO_(3)·Cl-Na·Ca and HCO_(3)·SO_(4)-Ca·Na,while confined water mainly exhibits Cl·HCO_(3)-Na and Cl-Na types.(2)Salinity coefficients indicate an increase in salinity from unconfined to confined water.TDS,Na^(+)and Cl^(–)concentrations show an increasing trend from mountainous to coastal areas in unconfined water,while confined water displays variability in TDS,Na^(+)and Cl^(–)concentrations.(3)Groundwater salinity is mainly influenced by water-rock interactions,including the dissolution of halite and gypsum,cation exchange,and seawater intrusion etc.Additionally,human activities and carbonate dissolution contribute to salinity in unconfined water.Seawater intrusion is identified as the primary factor leading to higher salinity in confined water compared to unconfined water,with increasing cation exchange and seawater interaction observed from unconfined to confined water.
基金the basic scientific research expense of the Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences(SK202119).
文摘Groundwater,as a critical component of the hydrological cycle,is essential for sustainable ecosystem development.To clarify the current status of domestic and overseas research,and to identify hotspots,frontier and future trends of groundwater and ecology research,this study utilizes bibliometric methods and CiteSpace software to examine relevant published articles in the Web of Science(WOS)and CNKI databases from 1978 to 2022.Specifically,this study analyzes(1)the annual number of published papers;(2)research institutions;(3)keywords;and(4)evolution of research hotspots.The findings reveal that the United States,China,and Germany are the top three countries in groundwater and ecology research.International research hotspots mainly focus on microbial ecology,climate change,groundwater-surface water interactions in the hyporheic zone,biodiversity,and submarine groundwater discharge,while domestic research hotspots mainly focus on ecological water conveyance,ecological flow,groundwater development and utilization,groundwater pollution,and groundwater and ecological protection.Both domestic and international research hotspots exhibit interdisciplinary features with diverse research objects and assessment methods.Future research in this area is expected to focus on topics such as contamination,groundwater quality,framework,mechanism,spatial distribution,and dissolved organic matter.Additionally,the study of ecological recharge,ecological flow,ecological protection,water intake and use will continue to be the hot topics domestically.
基金jointly funded by National Natural Science Foundation of China (41877398)project of the China Geological Survey (DD20221773)。
文摘Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.
文摘1,4-dioxane pollution is characterized by its early identification, widespread sources and extensive distribution. The pollutant is highly mobile and persistent in the water environment and is classified as a B2(probable) human carcinogen. After reviewing recent researches on the pollution status,transport and transformation characteristics of 1,4-dioxane in the water environment, as well as the environmental pollution remediation and treatment technologies, and the status of environmental regulation,this paper addresses that the distribution of 1,4-dioxane in water bodies is significantly correlated with chlorinated hydrocarbon pollutants such as 1,1,1-trichloroethane(1,1,1-TCA) and trichloroethylene(TCE).It is noteworthy that 1,4-dioxane often occurs in symbiosis with 1,1,1-TCA and has a similarity contamination plume distribution to 1,1,1-TCA. The natural attenuation of 1,4-dioxane in groundwater environment is weak, but there is a certain degree of biological oxidation attenuation. Current methods for treating 1,4-dioxane pollution mainly include extraction-treatment technology, advanced oxidation treatment technology, modified biological treatment technology and phytoremediation technology, all of which have their limitations in practical application. Currently, there is no environmental regulation available for the 1,4-dioxane pollution worldwide, and no enforceable standard established for defining the health trigger levels of 1,4-dioxane in drinking water. Research on this contaminant in China is generally limited to the site or laboratory scale, and there are no studies on the environmental risk and quality standards for 1,4-dioxane in the water environment.
基金This work was financially supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032)+1 种基金Central Plains Science and technology innovation leader Project(214200510030)Key research and development Project of Henan province(221111321500).
文摘Landslide is a serious natural disaster next only to earthquake and flood,which will cause a great threat to people’s lives and property safety.The traditional research of landslide disaster based on experience-driven or statistical model and its assessment results are subjective,difficult to quantify,and no pertinence.As a new research method for landslide susceptibility assessment,machine learning can greatly improve the landslide susceptibility model’s accuracy by constructing statistical models.Taking Western Henan for example,the study selected 16 landslide influencing factors such as topography,geological environment,hydrological conditions,and human activities,and 11 landslide factors with the most significant influence on the landslide were selected by the recursive feature elimination(RFE)method.Five machine learning methods[Support Vector Machines(SVM),Logistic Regression(LR),Random Forest(RF),Extreme Gradient Boosting(XGBoost),and Linear Discriminant Analysis(LDA)]were used to construct the spatial distribution model of landslide susceptibility.The models were evaluated by the receiver operating characteristic curve and statistical index.After analysis and comparison,the XGBoost model(AUC 0.8759)performed the best and was suitable for dealing with regression problems.The model had a high adaptability to landslide data.According to the landslide susceptibility map of the five models,the overall distribution can be observed.The extremely high and high susceptibility areas are distributed in the Funiu Mountain range in the southwest,the Xiaoshan Mountain range in the west,and the Yellow River Basin in the north.These areas have large terrain fluctuations,complicated geological structural environments and frequent human engineering activities.The extremely high and highly prone areas were 12043.3 km^(2)and 3087.45 km^(2),accounting for 47.61%and 12.20%of the total area of the study area,respectively.Our study reflects the distribution of landslide susceptibility in western Henan Province,which provides a scientific basis for regional disaster warning,prediction,and resource protection.The study has important practical significance for subsequent landslide disaster management.
基金Supported by the National Natural Science Foundation of China (41941017)the Fundamental Research Funds for the Central Public Research Institutes (SK202109)。
文摘1. Objectives Ophiolites from the oceanic crust are important indicators for identifying tectonic suture zones. Recently, a continuous ophiolite belt was found near the Guola Mountain in the Nujiang tectonic belt. Due to intensive hydrothermal alteration during tectonic evolution, clayey altered ophiolite with special engineering geological characteristics was formed, which has an extremely adverse impact on engineering stability. However, the adverse properties of clayey altered ophiolite are still not well understood in engineering practices(Zhang YS, et al., 2011).
基金supported by National Natural Science Foundation of China(41972262)Hebei Natural Science Foundation for Excellent Young Scholars(D2020504032).
文摘The effective recovery of water level is a crucial measure of the success of comprehensive groundwater over-exploitation management actions in North China.However,traditional evaluation method do not directly capture the relationship between mining and other equilibrium elements.This study presents an innovative evaluation method to assess the water level recovery resulting from mining reduction based on the relationship between variation in exploitation and recharge.Firstly,the recharge variability of source and sink terms for both the base year and evaluation year is calculated and the coefficient of recharge variationβis introduced,which is then used to calculate the effective mining reduction and solve the water level recovery value caused by the effective mining reduction,and finally the water level recovery contribution by mining reduction is calculated by combining with the actual volume of mining reduction in the evaluation area.This research focuses on Baoding and Shijiazhuang Plain area,which share similar hydrogeological conditions but vary in groundwater exploitation and utilization.As the effect of groundwater level recovery with mining reduction was evaluated in these two areas as case study.In 2018,the results showed an effective water level recovery of 0.17 m and 0.13 m in the shallow groundwater of Shijiazhuang and Baoding Plain areas,respectively.The contributions of recovery from mining reduction were 76%and 57.98%for these two areas,respectively.It was notable that the water level recovery was most prominent in the foothill plain regions.From the evaluation results,it is evident that water level recovery depends not only on the intensity of groundwater mining reduction,but also on its effectiveness.The value of water level recovery alone cannot accurately indicate the intensity of mining reduction,as recharge variation significantly influences water level changes.Therefore,in practice,it is crucial to comprehensively assess the impact of mining reduction on water level recovery by combining the coefficient of recharge variation with the contribution of water level recovery from mining reduction.This integrated approach provide a more reasonable and scientifically supported basis,offering essential data support for groundwater management and conservation.To improve the accuracy and reliability of evaluation results,future work will focus on the standardizing and normalizing raw data processing.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFB1504101)the Natural Science Foundation of Hebei Province,China(Grant No.D2021504041)。
文摘As typical carbonate geothermal reservoirs with low porosity in northern China,the Jixianian System in the Xiong’an New Area is the main target for geothermal fluid exploration.The Jixianian System comprises the Gaoyuzhuang,Yangzhuang,Wumishan,Hongshuizhuang,and Tieling formations.The characteristics,formation periods,and controlling factors of reservoir tectonic fractures have been determined based on analyses of outcrops,cores,thin sections,and image logs.The results show that unfilled fractures account for over 87% and most tectonic fractures are high-angle shear fractures with angles concentrated at 40°to 70°and the fracture porosity increases linearly with an increased fracture aperture.Within the same tectonic setting and stress field,the lithology and layer thickness are the dominant factors governing the development of tectonic fractures,which are the most developed in dolomites and thin layers.Tectonic fractures were most likely formed in regions near faults or areas with larger stress gradients.The tectonic fractures in the carbonate geothermal reservoirs are roughly divided into four sets:NNW-SSE and NNE-SSW oriented‘X’-conjugated shear fractures formed from the Paleozoic to the pre-Yanshanian Movement;NE-SW-oriented shear fractures,formed in episode B of the Yanshanian Movement,occurred at the Early Cretaceous;nearly E-W-oriented tensional fractures formed in the late Yanshanian Movement at the Late Cretaceous to Paleogene,and NEE-SW-oriented shear fractures formed during the Himalayan movement.
基金supported by National Natural Science Foundation(No.41272301 and No.42007171)Nature Fund of Hebei(No.D2021504034)Chinese Academy of Geological Sciences(No.YYWF201628).
文摘The increasing severity of ground subsidence,ground fissure and other disasters caused by the excessive exploitation of deep underground resources has highlighted the pressing need for effective management.A significant contributing factor to the challenges faced is the inadequacy of existing soil mechanics experimental instruments in providing effective indicators,creating a bottleneck in comprehensively understanding the mechanisms of land subsidence.It is urgent to develop a multi-field and multi-functional soil mechanics experimental system to address this issue.Based soil mechanics theories,the existing manufacturing capabilities of triaxial apparatus and the practical demands of the test system,a set of multi-field coupled high-pressure triaxial system is developed tailored for testing deep soils(at depths of approximately 3000 m)and soft rock.This system incorporates specialized design elements such as high-pressure chamber and horizontal deformation testing devices.In addition to the conventional triaxial tester functions,its distinctive feature encompass a horizontal deformation tracking measuring device,a water release testing device and temperature control device for the sample.This ensemble facilitates testing of horizontal and vertical deformation water release and other parameters of samples under a specified stress conditions,at constant or varying temperature ranging from-40℃–90℃.The accuracy of the tested parameters meets the requirements of relevant current specifications.The test system not only provides scientifically robust data for revealing the deformation and failure mechanism of soil subjected to extreme temperature,but also offers critical data support for major engineering projects,deep exploration and mitigation efforts related to soil deformation-induced disaster.
基金funded by China Geological Survey Program(DD20230422)and Chinese Academy of Geological Sciences Basic Research Fund Program(SK202214).
文摘The source area of the Yellow River(SAYR),located above the Huangheyan hydrological station,is important for ecological preservation and water source conservation in the Yellow River Basin.In this area,the impact of water conservation projects on the hydrology and the ecological environment is pivotal in protecting water resources and alpine vegetation ecosystems.This study investigates the impact of the Yellow River Source Hydropower Station on the runoff and ecological evolution of the SAYR,along with the underlying mechanism,using extensive datasets encompassing long-term meteorological,hydrological and remote sensing data from various time periods.Results show that,over the long term,precipitation is the primary factor driving runoff variations in the SAYR.Nevertheless,from 1990 to 2020,there is a notably inconsistent relationship between precipitation and runoff.After the completion of the Yellow River Source Hydropower Station in 2001,the water level of Eling Lake experienced and elevation of 2–3 m,leading to a gradual recovery of runoff.In addition,the basin's water balance shifted from a negative to a positive equilibrium,oscillating with changes in lake water levels.Consequently,the overflow zone of the Tangchama alluvial–proluvial fan in the upper reaches of the lakeshore shifted by 500 m,and marsh wetlands expanded by 20.78 km^(2).The increased storage of lakes and groundwater in the SAYR is the key controlling factor for the runoff recovery,changes in the basin's water balance,and enhancements in lakeshore vegetation ecology.Under the geological background of the Qinghai–Tibet Plateau's upliftment and intensified upstream river erosion,the basin experienced a substantial water imbalance due to declining discharge base levels,which is the most critical factor behind runoff attenuation in the SAYR towards the end of the 20th century.The construction of the hydropower station objectively raised the drainage base level of the basin,thereby positively contributing to the preservation of water balance,runoff stability,and the enhancement of swamps and wetlands along the lakeshore.
文摘The Wenchuan earthquake in 2008 and geo-hazards triggered by the earthquake caused large injuries and deaths as well as destructive damage for infrastructures like construction, traffic and electricity. It is urgent to select relatively secure areas for townships and cities constructed in high mountainous regions with high magnitude earthquakes. This paper presents the basic thoughts, evaluation indices and evaluation methods of geological security evaluation, water and land resources security demonstration and integrated assessments of geo-environmental suitability for reconstruction in alp and ravine with high magnitude earthquakes, which are applied in the worst-hit areas (12 counties). The integrated assessment shows that: (1) located in the Longmenshan fault zone, the evaluated area is of poor regional crust stability, in which the unstable and second unstable areas account for 79% of the total; (2) the geo-hazards susceptibility is high in the evaluation area. The spots of geo-hazards triggered by earthquake are mainly distributed along the active fault zone with higher distribution in the moderate and high mountains area, in which the areas of high and moderate susceptibility zoning accounts for 40.1% of the total; (3) geological security is poor in the evaluated area, in which the area of the unsuitable construction occupies 73.1%, whereas in the suitable construction area, the areas of geological security, second security and insecurity zoning account for 8.3 %, 9.3% and 9.3 % of the evaluated area respectively; (4) geo-environmentai suitability is poor in the evaluated area, in which the areas of suitability and basic suitability zoning account for 3.5% and 7.3% of the whole evaluation area.