期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications
1
作者 Wen-Bo Xing Shu-Ting Wu +5 位作者 Xin-Xin Wang Fen-Yao Li Ruo-Xuan Wang Ji-Hui He Jiao Fu Yan He 《World Journal of Stem Cells》 SCIE 2023年第10期960-978,共19页
Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DP... Peripheral nerve injury(PNI)seriously affects people’s quality of life.Stem cell therapy is considered a promising new option for the clinical treatment of PNI.Dental stem cells,particularly dental pulp stem cells(DPSCs),are adult pluripotent stem cells derived from the neuroectoderm.DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages,such as easy isolation,multidifferentiation potential,low immunogenicity,and low transplant rejection rate.DPSCs are extensively used in tissue engineering and regenerative medicine,including for the treatment of sciatic nerve injury,facial nerve injury,spinal cord injury,and other neurodegenerative diseases.This article reviews research related to DPSCs and their advantages in treating PNI,aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research. 展开更多
关键词 Dental pulp stem cells Peripheral nerve injury Regenerative medicine Neural regeneration Schwann cells Stem cells engineering
下载PDF
Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke 被引量:1
2
作者 Jianfeng Wang Peibang He +7 位作者 Qi Tian Yu Luo Yan He Chengli Liu Pian Gong Yujia Guo Qingsong Ye Mingchang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期2029-2036,共8页
Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we use... Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke. 展开更多
关键词 antioxidant capacity HO-1 human dental pulp stem cells ischemic stroke MIR-34A Nrf2 PROLIFERATION SIRT1 WNT1 β-catenin
下载PDF
MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases
3
作者 Heng Zhou Yan He +8 位作者 Wei Xiong Shuili Jing Xingxiang Duan Zhiyun Huang Gurek SNahal Youjian Peng Mingchang Li Yaoqi Zhu Qingsong Ye 《Bioactive Materials》 SCIE CSCD 2023年第5期409-437,共29页
Mesenchymal stem cells(MSCs)are promising seed cells for neural regeneration therapy owing to their plasticity and accessibility.They possess several inherent characteristics advantageous for the transplantation-based... Mesenchymal stem cells(MSCs)are promising seed cells for neural regeneration therapy owing to their plasticity and accessibility.They possess several inherent characteristics advantageous for the transplantation-based treatment of neurological disorders,including neural differentiation,immunosuppression,neurotrophy,and safety.However,the therapeutic efficacy of MSCs alone remains unsatisfactory in most cases.To improve some of their abilities,many studies have employed genetic engineering to transfer key genes into MSCs.Both viral and nonviral methods can be used to overexpress therapeutic proteins that complement the inherent properties.However,to date,different modes of gene transfer have specific drawbacks and advantages.In addition,MSCs can be functionalized through targeted gene modification to facilitate neural repair by promoting neural differentiation,enhancing neurotrophic and neuroprotective functions,and increasing survival and homing abilities.The methods of gene transfer and selection of delivered genes still need to be optimized for improved therapeutic and targeting efficacies while minimizing the loss of MSC function.In this review,we focus on gene transport technologies for engineering MSCs and the application of strategies for selecting optimal delivery genes.Further,we describe the prospects and challenges of their application in animal models of different neurological lesions to broaden treatment alternatives for neurological diseases. 展开更多
关键词 Mesenchymal stem cells Gene delivery Neurological diseases Viral vector Nonviral vectors
原文传递
Inorganic/organic combination:Inorganic particles/polymer composites for tissue engineering applications
4
作者 Astha Sharma Ganesh R.Kokil +5 位作者 Yan He Baboucarr Lowe Arwa Salam Tariq A.Altalhi Qingsong Ye Tushar Kumeria 《Bioactive Materials》 SCIE CSCD 2023年第6期535-550,共16页
Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites.Among these,the composites of inorganic materials with organic polymers present uni... Biomaterials have ushered the field of tissue engineering and regeneration into a new era with the development of advanced composites.Among these,the composites of inorganic materials with organic polymers present unique structural and biochemical properties equivalent to naturally occurring hybrid systems such as bones,and thus are highly desired.The last decade has witnessed a steady increase in research on such systems with the focus being on mimicking the peculiar properties of inorganic/organic combination composites in nature.In this review,we discuss the recent progress on the use of inorganic particle/polymer composites for tissue engineering and regenerative medicine.We have elaborated the advantages of inorganic particle/polymer composites over their organic particle-based composite counterparts.As the inorganic particles play a crucial role in defining the features and regenerative capacity of such composites,the review puts a special emphasis on the various types of inorganic particles used in inorganic particle/polymer composites.The inorganic particles that are covered in this review are categorised into two broad types(1)solid(e.g.,calcium phosphate,hydroxyapatite,etc.)and(2)porous particles(e.g.,mesoporous silica,porous silicon etc.),which are elaborated in detail with recent examples.The review also covers other new types of inorganic material(e.g.,2D inorganic materials,clays,etc.)based polymer composites for tissue engineering applications.Lastly,we provide our expert analysis and opinion of the field focusing on the limitations of the currently used inorganic/organic combination composites and the immense potential of new generation of composites that are in development. 展开更多
关键词 COMPOSITES Regenerative medicine Inorganic nanomaterials Mesoporous silica Porous silicon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部