期刊文献+
共找到75篇文章
< 1 2 4 >
每页显示 20 50 100
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
1
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Chronological Study of Coal-seam Water and its Implication on Gas Production in the South Qinshui Basin
2
作者 CHEN Biying FANG Lujia +4 位作者 LANG Yunchao XU Sheng LIU Congqiang ZHANG Luyuan HOU Xiaolin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期207-219,共13页
The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas ... The knowledge of the residence time of formation water is fundamental to understanding the subsurface flow and hydrological setting.To better identify the origin and evolution of coal seam water and its impact on gas storage and production,this study collected coalbed methane co-produced water in the southeast Qinshui Basin and detected chemical and isotopic compositions,especially 36Cl and 129I concentrations.The calculated tracer ages of 129I(5.2–50.6 Ma)and 36Cl(0.13–0.76 Ma)are significantly younger than the age of coal-bearing formation(Pennsylvanian-Cisuralian),indicating freshwater recharge after coal deposition.The model that utilises 129I/I and 36Cl/Cl ratios to constrain the timing of recharge and the proportion of recharge water reveals that over 60%of pre-anthropogenic meteoric water entered coal seams since 10 Ma and mixed with residue initial deposition water,corresponding to the basin inversion in Cenozoic.The spatial distribution of major ion concentrations reveals the primary recharge pathway for meteoric water from coal outcrops at the eastern margin to the basin center.This study demonstrates the occurrence of higher gas production rates from wells that accept water recharge in recent times and suggests the possible potential of the non-stagnant zones for high gas production. 展开更多
关键词 CBM co-produced water iodine-129 chlorine-36 water chemistry Qinshui Basin
下载PDF
Potential impacts of climate and anthropogenic-induced changes on DOM dynamics among the major Chinese rivers 被引量:1
3
作者 Si-Liang Li Hao Zhang +7 位作者 Yuanbi Yi Yutong Zhang Yulin Qi Khan MG Mostofa Laodong Guo Ding He Pingqing Fu Cong-Qiang Liu 《Geography and Sustainability》 CSCD 2023年第4期329-339,共11页
Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of clima... Dissolved organic matter (DOM) is closely linked to human activities in drainage basins and plays a crucial role in maintaining ecosystem functioning and reflecting environmental quality. However, the impacts of climate and anthropogenic-induced changes on DOM in riverine systems under increasingly warming conditions still need to be better understood, particularly at large regional scales. To address this knowledge gap, we analyzed a dataset containing 386 published measurements for nine major Chinese river systems, examining dissolved organic carbon (DOC) concentrations and optical properties of chromophoric DOM (CDOM) under diverse envi- ronmental conditions, including mean air temperature, precipitation, surface solar radiation, population density, and land use. Our findings indicate that riverine DOC concentrations are significantly higher in northern China (at ∼46.8%) than in the south. This disparity is primarily due to the high input of soil erosion-induced DOM from drying-affected lands (57.0%), farmland (49.1%), and forests in the north. The high temperate and strong hydrological conditions would lead to DOM degradation easily in the riverine system in the south of China. Our study highlights that various climatic and anthropogenic factors, such as agriculture, vegetation coverage, soil erosion, surface solar radiation, and precipitation, individually or in combination, can affect DOM dynamics in river systems. Therefore, considering alterations in DOM dynamics resulting from climate and environmental changes is crucial for carbon-neutral policies and sustainable river ecosystem assessments. 展开更多
关键词 River Dissolved organic carbon Land use Climate and environmental change Sustainable development
下载PDF
Spatial distribution and export of nutrients and metal elements in the subterranean estuary of Daya Bay
4
作者 Zhaoxi Liu Mingchen Ge +4 位作者 Qianqian Wang Xuejing Wang Kai Xiao Gang Li Hailong Li 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期77-86,共10页
Subterranean estuaries(STE)are important seawater-groundwater mixing zones with complex biogeochemical processes,which play a vital role in the migration and transformation of dissolved materials.In this study,we firs... Subterranean estuaries(STE)are important seawater-groundwater mixing zones with complex biogeochemical processes,which play a vital role in the migration and transformation of dissolved materials.In this study,we first investigated the spatial distributions of dissolved inorganic nitrogen(DIN),dissolved inorganic phosphorous(DIP),dissolved inorganic silicon(DSi)and metal elements(As,Ba,Cr,Cu,Fe,Mn,Ni,Pb,and Zn)in STE including upper intertidal,seepage face and subtidal zones.We then estimated submarine groundwater discharge(SGD)and associated nutrient and metal element fluxes.From the generalized Darcy’s law method,SGD was estimated to be 30.13 cm/d,which was about 7 times larger than the inflow(4.16 cm/d).The nutrient and metal fluxes from SGD were estimated to be(5.33±4.99)mmol/(m^(2)·d)for DIN,(0.22±0.03)mmol/(m^(2)·d)for DIP,(16.20±2.05)mmol/(m^(2)·d)for DSi,(1325.06±99.10)μmol/(m^(2)·d)for Fe,(143.41±25.13)μmol/(m^(2)·d)for Mn,(304.06±81.07)μmol/(m^(2)·d)for Zn,(140.21±13.33)μmol/(m^(2)·d)for Cu,(84.49±2.94)μmol/(m^(2)·d)for Pb,(37.38±5.51)μmol/(m^(2)·d)for Ba,(27.88±3.89)μmol/(m^(2)·d)for Cr,(10.10±6.33)μmol/(m^(2)·d)for Ni,and(6.25±3.45)μmol/(m^(2)·d)for As.The nutrient and metal fluxes from SGD were relatively higher than those from the inflow,suggesting that nearshore groundwater acted as the sources of nutrients and metal elements discharging into the sea.The environmental potential pollution of coastal seawater was evaluated by pollution factor index(Pi),comprehensive water quality index(CWQI),and ecological risk index(ERI).Pb mainly caused potential danger of nearshore environment with considerable contamination(Pi=5.78±0.19),heavy pollution(CWQI=4.09)and high ecological risk(ERI=18.00).This study contributed to better understanding the behavior of nutrients and metal elements and improving the sustainable management of STE under the pressure of anthropogenic activities and climate change. 展开更多
关键词 subterranean estuaries submarine groundwater discharge NUTRIENTS metal elements pollution assessment Daya Bay
下载PDF
Assessing the impacts of natural conditions and human activities on terrestrial water storage in Loess Plateau,China
5
作者 WANG Cheng-xi YAN Jian-wu +5 位作者 LIANG Wei SUN Shao-bo GOU Fen LI Xiao-fei LUO Yuan-yuan WANG Feng-jiao 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1921-1939,共19页
The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water stora... The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water storage(TWS),resulting in a complex mechanism.In the Loess Plateau region,the continuous alteration of natural conditions and profound impact of human activities have posed a serious threat to the natural ecosystem,leading to an escalating trend of TWS reduction.Addressing the specific analysis of how natural conditions and human activities affect TWS represents a pressing issue.This study employed the residual analysis method to discern the contribution rates of natural conditions and human activities,elucidated the spatial and temporal changes associated with each factor,and ascertained their individual influence.The findings indicated that TWS on the Loess Plateau exhibited a downward trend of-4.89 mm·a^(-1)from 2003 to 2017.The combined effects of climate change and human activities accounted for alterations in water resource reserves across most areas of the Loess Plateau,with human activities predominantly driving these changes.Precipitation emerged as the primary natural factor influencing TWS variations,and NDVI demonstrated a positive feedback effect on TWS at approximately 30%.Substantial spatial disparities in TWS existed within the Loess Plateau,with human activities identified as the primary cause for the decreasing trend.Vegetation restoration plays a positive role in saving water resources in the Loess Plateau to some extent,and vegetation growth exceeding the regional load will lead to water shortage. 展开更多
关键词 Terrestrial water storage Residual analysis Human activity the Loess Plateau
原文传递
Fluorescence Properties and Chemical Composition of Fine Particles in the Background Atmosphere of North China
6
作者 Ping LI Siyao YUE +13 位作者 Xiaoyang YANG Di LIU Qiang ZHANG Wei HU Shengjie HOU Wanyu ZHAO Hong REN Gang LI Yuanguan GAO Junjun DENG Qiaorong XIE Yele SUN Zifa WANG Pingqing FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1159-1174,共16页
To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Wa... To understand the aerosol characteristics in a regional background environment,fine-particle(PM_(2.5),n=228)samples were collected over a one-year period at the Shangdianzi(SDZ)station,which is a Global Atmospheric Watch regional background station in North China.The chemical and optical characteristics of PM_(2.5)were analyzed,including organic carbon,elemental carbon,water-soluble organic carbon,water-soluble inorganic ions,and fluorescent components of watersoluble organic matter.The source factors of major aerosol components are apportioned,and the sources of the fluorescent chromophores are further analyzed.The major chemical components of PM_(2.5)at SDZ were NO_(3)^(-),organic matter,SO_(4)^(2-),and NH_(4)^(+).Annually,water-soluble organic carbon contributed 48%±15%to the total organic carbon.Secondary formation(52%)and fossil fuel combustion(63%)are the largest sources of water-soluble organic matter and water-insoluble organic matter,respectively.In addition,three humic-like and one protein-like matter were identified via parallel factor analysis for excitation–emission matrices.The fluorescence intensities of the components were highest in winter and lowest in summer,indicating the main impact of burning sources.This study contributes to understanding the chemical and optical characteristics of ambient aerosols in the background atmosphere. 展开更多
关键词 fine aerosols excitation-emission matrix fluorescence properties primary biological aerosols Shangdianzi
下载PDF
Nitrous oxide (N_2O) emissions from a mesotrophic reservoir on the Wujiang River,southwest China 被引量:11
7
作者 Xiaolong Liu Siliang Li +5 位作者 Zhongliang Wang Guilin Han Jun Li Baoli Wang Fushun Wang Li Bai 《Acta Geochimica》 EI CAS CSCD 2017年第4期667-679,共13页
Aquatic ecosystems have been identified as a globally significant source of nitrous oxide(N_2O) due to continuous active nitrogen involvement, but the processes and influencing factors that control N_2O production are... Aquatic ecosystems have been identified as a globally significant source of nitrous oxide(N_2O) due to continuous active nitrogen involvement, but the processes and influencing factors that control N_2O production are still poorly understood, especially in reservoirs. For that, monthly N_2O variations were monitored in Dongfeng reservoir(DFR)with a mesotrophic condition. The dissolved N_2O concentration in DFR displayed a distinct spatial–temporal pattern but lower than that in the eutrophic reservoirs. During the whole sampling year, N_2O saturation ranging from 144% to 640%, indicating that reservoir acted as source of atmospheric N_2O. N_2O production is induced by the introduction of nitrogen(NO_3^-, NH_4^+) in mesotrophic reservoirs, and is also affected by oxygen level and water temperature. Nitrification was the predominate process for N_2O production in DFR due to well-oxygenated longitudinal water layers.Mean values of estimated N_2O flux from the air–water interface averaged 0.19 μmol m^(-2)h^(-1) with a range of 0.01–0.61 μmol m^(-2)h^(-1). DFR exhibited less N_2O emission flux than that reported in a nearby eutrophic reservoir, but still acted as a moderate N_2O source compared with other reservoirs and lakes worldwide. Annual emissions from the water–air interface of DFR were estimated to be 0.32×10~5 mol N–N_2O, while N_2O degassing from releasing water behind the dam during power generation was nearly five times greater. Hence, N_2O degassing behind the dam should be taken into account for estimation of N_2O emissions from artificial reservoirs, an omission that historically has probably resulted in underestimates. IPCC methodology should consider more specifically N_2O emission estimation in aquatic ecosystems, especially in reservoirs, the default EF5 model will lead to an overestimation. 展开更多
关键词 Nitrous oxide Mesotrophic reservoir Nitrogen dynamics IPCC methodology
下载PDF
Distribution and partitioning of heavy metals in large anthropogenically impacted river, the Pearl River, China 被引量:6
8
作者 Silan Liu Zhongwei Wang +7 位作者 Yuanyuan Zhang Yulong Liu Wei Yuan Ting Zhang Yujie Liu Ping Li Li He Jiubin Chen 《Acta Geochimica》 EI CAS CSCD 2019年第2期216-231,共16页
In order to evaluate the distribution and partitioning characteristics of heavy metals in the large anthropogenically impacted Pearl River Basin, the contents of ‘‘anthropophile'' elements(Cr, Ni, Cu, Zn, Cd... In order to evaluate the distribution and partitioning characteristics of heavy metals in the large anthropogenically impacted Pearl River Basin, the contents of ‘‘anthropophile'' elements(Cr, Ni, Cu, Zn, Cd and Pb,which are clearly influenced by human activities) were determined, and their partitioning coefficients(Kd) between water and sediments and enrichment factors(EF) were calculated for samples collected at different locations along the Pearl River main stream. The modified BCR sequential extraction procedure(proposed by the European Community Bureau of Reference in 1993), which involves the successive extraction of metals in a decreasing order of reactivity, was applied. Sediment samples from the upper,middle, and lower reaches were included in this study. The results showed that the content of most metals in water and sediment samples gradually increases from upstream to downstream, suggesting a possible input from human activities as shown by their increasing high EF, ranged from 1.4 to 3.9 for Cu, from 1.4 to 6.7 for Zn, from 2.5 to59.1 for Cd, and from 1.7 to 8.9 for Pb, respectively. Thehigher partition coefficients(Kd) for Cr, Zn, and Pb(10~5–10~6) indicated that they were mainly transported in solid phase, while parts of Ni, Cu, and Cd were transported in dissolved phase as they display relatively lower Kdin the range of 10~4–10~5. According to the results of the BCR leaching, the percentage of non-residual fraction of heavy metals in the sediments showed a decreasing order of Cd [ Pb [ Zn [ Cu [ Ni [ Cr, implying that Cd and Pb were more active and bioavailable compared to the other four metals, and thus would be potentially more harmful to the watershed ecosystem. 展开更多
关键词 PEARL RIVER Water and SEDIMENT HEAVY metals Partitioning DISTRIBUTION
下载PDF
Using seismic surveys to investigate sediment distribution and to estimate burial fluxes of OC, N, and P in a canyon reservoir 被引量:5
9
作者 Ningxiao Yu Yong Qin +2 位作者 Feng Hao Yunchao Lang Fushun Wang 《Acta Geochimica》 EI CAS CSCD 2019年第6期785-795,共11页
As a high-precision survey method,seismic surveying has been increasingly applied to inland water research,although its application to artificial reservoirs has remained limited.As a special artificial water body,rese... As a high-precision survey method,seismic surveying has been increasingly applied to inland water research,although its application to artificial reservoirs has remained limited.As a special artificial water body,reservoirs have important effects on the fluvial transport of material from land to ocean,and inevitably have complex terrain which can complicate and distort the results of seismic surveys.Therefore,there are still some problems need to be resolved in the application of seismic surveys in reservoirs with complex terrain.For this study,the Dongfeng Reservoir located in the upper reaches of the Wujiang River was chosen as an example to test the seismic survey method.Our testing showed that(1)because of the complex underwater terrain,the signal-to-noise ratio of the echo signal in canyon reservoir is low,making it difficult to determine sediment layers thicknesses in some areas;and(2)due to the large spatial heterogeneity of sediment distribution,insufficient density of cross-sections can lead to inaccurate interpolation results.To improve the accuracy of calculations,a mathematical method was used.Ultimately,the total burial mass of sediment was estimated at 2.85 x 107 tons,and the average burial rates of total organic carbon,total phosphorus,and total nitrogen were estimated at 0.194,0.011,and 0.014 g cm-2 year-1,respectively.These values were close to the results of previous studies and hydrographic station data,indicating that seismic survey can be a reliable and efficient method for the mapping of reservoirs. 展开更多
关键词 Dongfeng Reservoir Seismic survey SEDIMENTATION Nutrients burial fluxes
下载PDF
Damming effects on dissolved inorganic carbon in different kinds of reservoirs in Jialing River,Southwest China 被引量:4
10
作者 Gaoyang Cui Xiaodong Li +4 位作者 Qinkai Li Jun Huang Yuele Tao Siqi Li Jun Zhang 《Acta Geochimica》 EI CAS CSCD 2017年第4期581-597,共17页
To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Do... To assess the effects of river damming on dissolved inorganic carbon in the Jialing River, a total of 40 water samples, including inflow, outflow, and stratified water in four cascade reservoirs(Tingzikou, Xinzheng,Dongxiguan, Caojie) were collected in January and July,2016. The major cations, anions, and δ^(13)C_(DIC) values were analyzed. It was found that the dissolved compositions are dominated by carbonate weathering, while sulfuric acids may play a relatively important role during carbonate weathering and increasing DIC concentration. Different reservoirs had variable characteristics of water physiochemical stratification. The DIC concentrations of reservoir water were lower in summer than those in winter due to the dilute effects and intensive aquatic photosynthesis, as well as imported tributaries. The δ^(13)C_(DIC) values in Tingzikou Reservoir were higher during summer than those in winter,which indicated that intensive photosynthesis increased the δ^(13)C_(DIC) values in residual water, but a similar trend was not obvious in other reservoirs. Except for in Xinzheng Reservoir, the δ^(13)C_(DIC) values in inflow and outflow reservoir water were lower than those in the surface water of stratified sampling in summer. For stratified sampling, it could be found that, in summer, the Tingzikou Reservoir δ^(13)C_(DIC) values significantly decreased with water depthdue to the anaerobic breakdown of organic matter. The significant correlation(p<0.01 or 0.05) between the DIC concentrations, the δ^(13)C_(DIC) values and anthropogenic species(Na^++K^+, Cl~–, SO_4^(2-) and NO_3^-) showed that the isotope composition of DIC can be a useful tracer of contaminants. In total, Tingzikou Reservoir showed lacustrine features, Xinzheng Reservoir and Dongxiguan Reservoir had "transitional'' features, and Caojie Reservoir had a total of "fluvial'' features. Generally, cascade reservoirs in the Jialing River exhibited natural river features rather than typical lake features due to characteristics of reservoir water in physiochemical stratification, spatiotemporal variations of DIC concentrations and isotopic compositions. It is evident that the dissolved inorganic carbon dynamics of natural rivers had been partly remolded by dam building. 展开更多
关键词 River damming Water chemistry Reservoir types Dissolved inorganic carbon isotope composition DIC concentration
下载PDF
Temporal and spatial characteristics of dissolved organic carbon in the Wujiang River,Southwest China 被引量:4
11
作者 Xi Peng Baoli Wang Yanchuang Zhao 《Acta Geochimica》 EI CAS CSCD 2017年第4期598-604,共7页
River systems play an important role in the global carbon cycle. Rivers transport carbon to the ocean and also affect the carbon cycle in the coastal ocean. The flux from land to the ocean is thought to be a very impo... River systems play an important role in the global carbon cycle. Rivers transport carbon to the ocean and also affect the carbon cycle in the coastal ocean. The flux from land to the ocean is thought to be a very important part of the land carbon budget. To investigate the effect of dam-building on dissolved organic carbon(DOC)in rivers, three reservoirs of different trophic states in the Wujiang basin, Guizhou Province, were sampled twice per month between May 2011 and May 2012. Temporal and spatial distributions of DOC in the reservoirs and their released waters were studied. It was found that different factors controlled DOC in river water, reservoir water, and released water. DOC in the rivers tended to be affected by primary production. For reservoirs, the main controlling factors of DOC concentration varied by trophic state. For the mesotrophic Hongjiadu Reservoir, the effect of primary production on DOC concentration was obvious. For the eutrophic Dongfengdu Reservoir and the hypereutrophic Wujiangdu Reservoir, primary production was not significant and DOC came instead from soil and plant litter. 展开更多
关键词 Carbon cycle Dissolved organic carbon Dam-building effect The Wujiang River
下载PDF
Engineering a High-Selectivity PVDF Hollow-Fiber Membrane for Cesium Removal 被引量:4
12
作者 Shiyuan Ding Lilan Zhang +1 位作者 Yang Li Li’an Hou 《Engineering》 SCIE EI 2019年第5期865-871,共7页
In this study,a copper ferrocyanide/silica/polyvinylidene fluoride(CuFC/SiO2/PVDF)hollow-fiber composite membrane was successfully synthesized through a facile and effective crosslinking strategy.The PVDF hollow-fiber... In this study,a copper ferrocyanide/silica/polyvinylidene fluoride(CuFC/SiO2/PVDF)hollow-fiber composite membrane was successfully synthesized through a facile and effective crosslinking strategy.The PVDF hollow-fiber membrane with embedded SiO2 was used to fix the dispersion of CuFC nanoparticles for cesium(Cs)removal.The surface morphology and chemical composition of the composite membrane were analyzed using scanning electron microscopy and X-ray photoelectron spectroscopy(XPS).The composite membrane showed a high Cs rejection rate and membrane flux at the three layers of CuFC and 0.5%SiO2,and its Cs rejection rate was not affected by variation in the pH(pH=4–10).The modified membrane could be effectively regenerated many times using ammonium nitrate(NH4NO3).The Cs selectivity performance was verified by an efficient Cs rejection rate(76.25%and 88.67%in 8 h)in a solution of 100 lg L 1 of Cs with 1 mmol L 1 of competing cations(K+and Na+).The CuFC/SiO2/PVDF hollowfiber composite membrane showed a particularly superior removal performance(greater than 90%)in natural surface water and simulated water with a low Cs concentration.Therefore,the CuFC/SiO2/PVDF hollow-fiber composite membrane can be used directly in engineering applications for the remediation of radioactive Cs-contaminated water. 展开更多
关键词 CESIUM REMOVAL Composite membrane Copper FERROCYANIDE Polyvinylidene FLUORIDE
下载PDF
Detection of tyrosine,trace metals and nutrients in cow dung:the environmental significance in soil and water environments 被引量:3
13
作者 Khan M.G.Mostofa Longlong Li Congqiang Liu 《Acta Geochimica》 EI CAS CSCD 2018年第4期632-638,共7页
This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven tr... This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes. 展开更多
关键词 Cow dung Excitation-emission matrix (EEM)spectroscopy Parallel factor (PARAFAC) modelling TYROSINE Trace metals
下载PDF
CO_2 emission and organic carbon burial in the Xinanjiang Reservoir 被引量:3
14
作者 Fushun Wang Baoli Wang +2 位作者 Tao Zhou Tianyu Chen Jing Ma 《Acta Geochimica》 EI CAS CSCD 2017年第3期465-468,共4页
In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface wa... In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface was studied, as was organic carbon burial in sediment. The results show a significant seasonal difference in CO_2 emissions. River impoundment led to the enhancement of aquatic photosynthesis, generating large amounts of authigenic organic carbon that was then buried in sediment. 展开更多
关键词 The Xinanjiang Reservoir Carbon emission SEDIMENT Carbon retention
下载PDF
Sources of dissolved inorganic carbon in rivers from the Changbaishan area, an active volcanic zone in North Eastern China 被引量:2
15
作者 Xue Bai Benjamin Chetelat Yilong Song 《Acta Geochimica》 EI CAS CSCD 2017年第3期410-415,共6页
Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the orig... Major elements and carbon isotopes of dissolved inorganic carbon(DIC)have been measured in the waters of Changbaishan mountain,a volcanic area in northeastern China,between June and September 2016 to decipher the origin of the CO_2 involved in chemical weathering reactions.Spatial variations of major elements ratios measured in water samples can be explained by a change of the chemical composition of the volcanic rocks between the volcanic cone(trachytes)and the basaltic shield as evidenced by the variations in the composition of these rocks.Hence,DIC results from the neutralization of CO_2 by silicate rocks.DIC concentrations vary from 0.3 to 2.5 mmol/L and carbon isotopic compositions of DIC measured in rivers vary from-14.2‰to 3.5‰.At a first order,the DIC transported by rivers is derived from the chemical weathering’s consumption of CO_2 with a magmatic origin,enriched in^(13)C(-5%)and biogenic soil CO_2 with lower isotopic compositions.The highest δ^(13)C values likely result from C isotopes fractionation during CO_2 degassing in rivers.A mass balance based on carbon isotopes suggest that the contribution of magmatic CO_2 varied from less than 20%to more than 70%.Uncertainties in this calculation associated with CO_2 degassing in rivers are difficult to quantify,and the consequence of CO_2 degassing would be an overestimation of the contribution of DIC derived from the neutralization of magmatic CO_2 by silicate rocks. 展开更多
关键词 Carbon isotopes Dissolved inorganic carbon RIVERS Chemical weathering CHANGBAISHAN Active volcanic zone
下载PDF
High-resolution structure-from-motion models covering 160 km-long surface ruptures of the 2021 M_(W)7.4 Madoi earthquake in northern Qinghai-Tibetan Plateau 被引量:5
16
作者 Jing Liu-Zeng Wenqian Yao +9 位作者 Xiaoli Liu Yanxiu Shao Wenxin Wang Longfei Han Yan Wang Xianyang Zeng Jinyang Li Zijun Wang Zhijun Liu Hongwei Tu 《Earthquake Research Advances》 CSCD 2022年第2期38-48,共11页
The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptur... The May 222021 M_(W)7.4 Madoi,Qinghai,China earthquake presented a rare opportunity to apply the modern unmanned aerial vehicle(UAV)photography method in extreme altitude and weather conditions to image surface ruptures and near-field effects of earthquake-related surface deformations in the remote Tibet.High-resolution aerial photographs were acquired in the days immediately following the mainshock.The complex surface rupture patterns associated with this event were covered comprehensively at 3-6 cm resolution.This effort represents the first time that an earthquake rupture in the interior of the Qinghai-Tibetan Plateau has been fully and systematically captured by such high-resolution imagery,with an unprecedented level of detail,over its entire length.The dataset has proven valuable in documenting subtle and transient rupture features,such as the significant mole-tracks and opening fissures,which were ubiquitous coseismically but degraded during the subsequent summer storm season.Such high-quality imagery also helps to document with high fidelity the fractures of the surface rupture zone(supplements of this paper),the pattern related to how the faults ruptured to the ground surface,and the distribution of off-fault damage.In combination with other ground-based mapping efforts,the data will be analyzed in the following months to better understand the mechanics of earthquake rupture related to the fault zone rheology,rupture dynamics,and frictional properties along with the fault interface. 展开更多
关键词 UAV photography Earthquake surface rupture STRUCTURE-FROM-MOTION 2021 M_(W)7.4 Madoi earthquake
下载PDF
Seasonal changes in TC and WSOC and their ^13C isotope ratios in Northeast Asian aerosols: land surface–biosphere–atmosphere interactions 被引量:2
17
作者 Chandra Mouli Pavuluri Kimitaka Kawamura 《Acta Geochimica》 EI CAS CSCD 2017年第3期355-358,共4页
In order to understand the relative importance of anthropogenic and biological sources of carbonaceous aerosols in Northeast Asia,we measured total carbon(TC)and water-soluble organic carbon(WSOC)and their stable carb... In order to understand the relative importance of anthropogenic and biological sources of carbonaceous aerosols in Northeast Asia,we measured total carbon(TC)and water-soluble organic carbon(WSOC)and their stable carbon isotope ratios(d^(13)C)in total suspended particulates collected from Sapporo,northern Japan(43.07°N,141.36°E)over a 1-year period(during 2 September 2009and 5 October 2010).Temporal variations of TC showed a gradual decrease from mid-autumn to winter followed by a gradual increase to growing season with a peak in early summer.Both d^(13)C_(TC)and d^(13)C_(WSOC)showed very similar temporal trends with a gradual enrichment of^(13)C from mid-autumn to winter followed by a depletion in the^(13)C to early summer and thereafter it remained stable,except for few cases.Based on the results obtained together with the air mass trajectories,we found that biogenic emissions including biological particles(e.g.,pollen)and secondary organic aerosol formation from biogenic volatile organic compounds are the important sources of carbonaceous aerosols in spring/summer whereas fungal spores from soil and biomass burning and enhanced fossil fuel combustion contribute significantly in autumn/winter and in winter,respectively,in Northeast Asia. 展开更多
关键词 Carbonaceous aerosols Stable carbon isotope ratios Sources Northeast Asia
下载PDF
Sulfate sources constrained by sulfur and oxygen isotopic compositions in the upper reaches of the Xijiang River,China 被引量:2
18
作者 Jing Liu Siliang Li +4 位作者 Jun Zhong Xuetao Zhu Qingjun Guo Yunchao Lang Xiaokun Han 《Acta Geochimica》 EI CAS CSCD 2017年第4期611-618,共8页
While it is critical to accurately understand the sources and transformation of sulfate based on time-series analysis, there are limited studies on temporal variation of sulfate in rivers and on rock weathering by sul... While it is critical to accurately understand the sources and transformation of sulfate based on time-series analysis, there are limited studies on temporal variation of sulfate in rivers and on rock weathering by sulfuric acids.We conducted a monthly sampling campaign in the Beipan, Nanpan, and Hongshui Rivers over the course of one hydrological year. This study examined seasonal variations in riverine sulfate impacted by the monsoon climate in the upper reaches of the Xijiang River basin. In general, the SO_4^(2-) contents in these rivers dropped from relatively high levels to low values during the high-flow season, in response to increasing discharge. The sulfate was generally enriched in heavy isotopes during the low-flow season compared to the high-flow season. The calculated results indicate that the riverine sulfate was mainly derived from sulfide oxidation, but that evaporite dissolution could be an important source during the low-flow season, based on isotopic evidence. Mine drainage is likely an important source of sulfate to these rivers during the high-flow season due to contributions from fast surface flow, which responds to frequent heavy rain in monsoonal climate regions. Arelatively high proportion of HCO_3^- was found to be derived from rock weathering by sulfuric acid during the high-flow season when compared to that observed during the low-flow season. The results suggest that approximately one quarter of the HCO_3^- in the Hongshui River originated from carbonate weathering by sulfuric acid derived from the oxidation of sulfide. Such information on the specific dual isotopic characteristics of riverine sulfate throughout a hydrological year can provide unique evidence for understanding the temporal variability of sulfate concentrations and weathering processes in rivers. 展开更多
关键词 Sulfur isotope Oxygen isotope Riverine sulfate Carbonate weathering Xijiang River
下载PDF
Significant Mercury Isotope Anomalies in Hydrothermal Altered Coals from the Huaibei Coalfield,China 被引量:2
19
作者 ZHENG Liugen SUN Ruoyu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2263-2264,共2页
Igneous intrusion into coal-bearing strata can cause an abrupt increase of temperature-pressure and trigger hydrothermal circulation at the igneous rock-coal contact zone. The conductive heat of intruded lnagma and co... Igneous intrusion into coal-bearing strata can cause an abrupt increase of temperature-pressure and trigger hydrothermal circulation at the igneous rock-coal contact zone. The conductive heat of intruded lnagma and convective migration of secondary hydrothermal fluids have been observed to significantly alter the concentrations and modes of occurrence of mercury (Hg) in thermally-intruded coals. 展开更多
关键词 Hg rock Significant Mercury Isotope Anomalies in Hydrothermal Altered Coals from the Huaibei Coalfield China
下载PDF
Effects and underlying mechanisms of damming on carbon and nitrogen cycles and transport in rivers of Southwest China:project introduction 被引量:2
20
作者 Hua-Yun Xiao 《Acta Geochimica》 EI CAS CSCD 2017年第4期577-580,共4页
Southwest China is the primary area for damming rivers to produce hydroelectric energy and store water.River damming has changed hydrodynamic,chemical,and biological processes,which are related to sinks and sources of... Southwest China is the primary area for damming rivers to produce hydroelectric energy and store water.River damming has changed hydrodynamic,chemical,and biological processes,which are related to sinks and sources of greenhouse gases and carbon and nitrogen fluxes of different interfaces.Here,I provide an introduction to a river damming-related foundation,the National Key R&D Program of China(2016YTA0601000).Supported by the foundation,we carried out research on multiprocesses/multi-interfaces of carbon and nitrogen biogeochemical cycles in a dammed river system and have produced important results,as presented in this issue of the journal. 展开更多
关键词 Damming Carbon and nitrogen cycles Southwest Chinese rivers
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部